1
|
Nkwingwa BK, Wado EK, Foyet HS, Bouvourne P, Jugha VT, Mambou AHMY, Bila RB, Taiwe GS. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems. Biomed Pharmacother 2023; 165:115093. [PMID: 37392651 DOI: 10.1016/j.biopha.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Albizia adianthifolia (Schumach.) (Fabaceae) is a medicinal herb used for the treatment of epilepsy and memory impairment. This study aims to investigate the anticonvulsant effects of Albizia adianthifolia aqueous extract against pentylenetetrazole (PTZ)-induced spontaneous convulsions in mice; and determine whether the extract could mitigate memory impairment, oxidative/nitrergic stress, GABA depletion and neuroinflammation. Ultra-high performance liquid chromatography/mass spectrometry analysis was done to identify active compounds from the extract. Mice were injected with PTZ once every 48 h until kindling was developed. Animals received distilled water for the normal group and negative control groups, doses of extract (40, 80, or 160 mg/kg) for the test groups and sodium valproate (300 mg/kg) for the positive control group. Memory was measured using Y maze, novel object recognition (NOR) and open field paradigms, while the oxidative/nitrosative stresses (MDA, GSH, CAT, SOD and NO), GABAergic transmission (GABA, GABA-T and GAD) and neuro-inflammation (TNF-α, IFN-γ, IL- 1β, and IL-6) were determined. Brain photomicrograph was also studied. Apigenin, murrayanine and safranal were identified in the extract. The extract (80-160 mg/kg) significantly protected mice against seizures and mortality induced by PTZ. The extract significantly increased the spontaneous alternation and the discrimination index in the Y maze and NOR tests, respectively. PTZ kindling induced oxidative/nitrosative stress, GABA depletion, neuroinflammation and neuronal cells death was strongly reversed by the extract. The results suggest that the anticonvulsant activity of Albizia adianthifolia extract is accompanied by its anti-amnesic property, and may be supported by the amelioration of oxidative stress, GABAergic transmission and neuroinflammation.
Collapse
Affiliation(s)
- Balbine Kamleu Nkwingwa
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Parfait Bouvourne
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Vanessa Tita Jugha
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Alain Hart Mann Youbi Mambou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Raymond Bess Bila
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
2
|
Fokoua AR, Ajayi AM, Ben-Azu B, Chouna R, Folarin O, Olopade J, Nkeng-Efouet PA, Aderibigbe AO, Umukoro S, Nguelefack TB. The antioxidant and neuroprotective effects of the Psychotria camptopus Verd. Hook. (Rubiaceae) stem bark methanol extract contributes to its antiepileptogenic activity against pentylenetetrazol kindling in male Wistar rats. Metab Brain Dis 2021; 36:2015-2027. [PMID: 34460047 DOI: 10.1007/s11011-021-00825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A substantial number of epileptic patients are resistant to the current medication thus necessitating the search for alternative therapies for intractable forms of the disease. Previous studies demonstrated the acute anticonvulsant properties of the methanol extract of the stem bark of Psychotria camptopus (MEPC) in rats. This study investigated the effects of MEPC on pentylenetetrazole-kindled Wistar rats. Kindling was induced by intraperitoneal injection of pentylenetetrazole (37.5 mg/kg) on every alternate day, 1 h after each daily oral pretreatment of rats (8 ≤ n ≤ 10) with MEPC (40, 80 and 120 mg/kg), vehicle or diazepam (3 mg/kg) for 43 days. The kindling development was monitored based on seizure episodes and severity. Rats' brains were collected on day 43 for the determination of oxidative stress parameters. The histomorphological features and neuronal cell viability of the prefrontal cortex (PFC) and hippocampus were also assessed using H&E and Cresyl violet stains. Chronic administration of pentylenetetrazole time-dependently decreased the latency to myoclonic and generalized seizures, and increased seizure scores and the number of kindled rats. MEPC and diazepam significantly increased the latencies to myoclonic jerks and generalized tonic-clonic seizures. These substances also reduced seizure score and the number of rats with PTZ-kindling. MEPC improved glutathione status and decreased lipid peroxidation in the brains of kindled rats. MEPC also exhibited neuroprotection against pentylenetetrazole-induced hippocampal and PFC neuronal damages. These results suggest that P. camptopus has antiepileptogenic activity, which might be related to the augmentation of antioxidant and neuroprotective defense mechanisms, and further confirm its usefulness in the management of epilepsy.
Collapse
Affiliation(s)
- Aliance Romain Fokoua
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of Dschang, Dschang, Cameroon
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Nigeria
| | - Rodolphe Chouna
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oluwabusayo Folarin
- Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Pepin Alango Nkeng-Efouet
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Télesphore Benoît Nguelefack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of Dschang, Dschang, Cameroon.
| |
Collapse
|
3
|
Taiwe GS, Ndieudieu Kouamou AL, Dabole B, Ambassa ARM, Mambou HMAY, Bila RB, Tchoya TB, Menanga JR, Djomeni Dzeufiet PD, Ngo Bum E. Protective Effects of Anthocleista djalonensis Extracts against Pentylenetetrazole-Induced Epileptic Seizures and Neuronal Cell Loss: Role of Antioxidant Defense System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5523705. [PMID: 34504535 PMCID: PMC8423543 DOI: 10.1155/2021/5523705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
Oxidative stress and neurodegeneration are involved in the initiation of epileptogenesis and progression of epileptic seizures. This study was aimed at investigating the anticonvulsant, antioxidant, and neuroprotective properties of active fractions isolated from Anthocleista djalonensis root barks in pentylenetetrazole mouse models of epileptic seizures. Bioactive-guided fractionation of Anthocleista djalonensis (AFAD) extracts using acute pentylenetetrazole (90 mg/kg) induced generalised tonic-clonic seizures, which afforded a potent anticonvulsant fraction (FPool 5). Further fractionation of AFAD was performed by high-performance liquid chromatography, which yielded fifteen subfractions, which were chemically characterised. In addition, AFAD was tested against convulsions or spontaneous kindled seizures induced, respectively, by acute (50 mg/kg) or subchronic (30 mg/kg) injection of pentylenetetrazole. Finally, oxidative stress markers, brain GABA content, and neuronal cell loss were evaluated in AFAD-treated pentylenetetrazole-kindled mice. Administration of AFAD significantly protected mice against acute pentylenetetrazole (90 mg/kg)-induced convulsions. In acute pentylenetetrazole (50 mg/kg)-induced hippocampal and cortical paroxysmal discharges, AFAD significantly decreased the number of crisis, the cumulative duration of crisis, and the mean duration of crisis. Additionally, AFAD significantly decreased the number of myoclonic jerks and improved the seizure score in subchronic pentylenetetrazole-induced kindled seizures. The pentylenetetrazole-induced alteration of oxidant-antioxidant balance, GABA concentration, and neuronal cells in the brain were attenuated by AFAD treatment. This study showed that AFAD protected mice against pentylenetetrazole-induced epileptic seizures possibly through the enhancement of antioxidant defence and GABAergic signalling. These events might be correlated with the amelioration of neuronal cell loss; hence, AFAD could be a potential candidate for the treatment of epilepsy.
Collapse
Affiliation(s)
- Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Bernard Dabole
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | | | | | - Raymond Bess Bila
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Thierry Bang Tchoya
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Joseph Renaud Menanga
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| |
Collapse
|
4
|
Fokoua AR, Ndjenda MK, Kaptué Wuyt A, Tatsinkou Bomba FD, Dongmo AK, Chouna R, Nkeng-Efouet PA, Nguelefack TB. Anticonvulsant effects of the aqueous and methanol extracts from the stem bark of Psychotria camptopus Verdc. (Rubiacaea) in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113955. [PMID: 33610704 DOI: 10.1016/j.jep.2021.113955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/08/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The decoction from the stem bark of Psychotria camptopus (Rubiaceae) is used in the Cameroonian pharmacopoeia to treat neurological pathologies including epilepsy. AIM The present work was undertaken to study the anticonvulsant properties of the aqueous (AE) and methanol (ME) extracts from the stem bark of P. camptopus in acute models of epileptic seizures in Wistar rats. METHOD AE and ME were obtained by decoction and maceration of the stem bark powder in water and methanol, respectively. They were tested orally at the doses of 40, 80 and 120 mg/kg, on the latency of onset and duration of epileptic seizures induced by pentylene tetrazole (PTZ, 70 mg/kg, i.p.). The kinetic effect of both extracts at 120 mg/kg was evaluated. Their effects on diazepam (50 mg/kg) induced sleep and strychnine (STR, 2.5 mg/kg, i.p.) induced seizures were determined. ME was further tested on picrotoxin (PIC, 7.5 mg/kg, i.p.) and thiosemicarbazide (TSC, 50 mg/kg, i.p.) induced seizure models. The phytochemical composition of ME was assessed using LC-MS method, as well as its acute toxicity. RESULTS AE and ME significantly (p < 0.001) reduced the duration of seizures in both PTZ and STR models. Their maximal effect was observed at 1 h after administration, though their effect at 120 mg/kg was maintained (p < 0.05) up to 24 h post-treatment. Both extracts significantly (p < 0.01) reduced sleep duration. ME significantly (p < 0.001) increased the latency of rat death on PIC-induced convulsions. In TSC rats, ME significantly (p < 0.001) delayed the latency to the first convulsion, and decreased the duration and frequency of convulsions. ME showed no acute toxicity while its phytochemical screening revealed the presence of two flavonoids (Rutin and Butin), two triterpenoid saponins (Psycotrianoside B and Bauerenone) and four alkaloids (10-Hydroxy-antirhine, 10-hydroxy-iso-deppeaninol, Emetine and Hodkinsine). In conclusion, AE and ME from the stem bark of P. camptopus have comparable anticonvulsant properties. The effect of ME is likely due to the presence of flavonoids and alkaloid and the activation of GABA pathway. These results further justify and support the use of P. camptopus in traditional medicine for the treatment of epilepsy.
Collapse
Affiliation(s)
- Aliance Romain Fokoua
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon; Fondation Alango, Center for African Phytomedicine, P.O. Box, 371, Dschang, Cameroon.
| | - Magloire K Ndjenda
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Adeline Kaptué Wuyt
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Francis Desire Tatsinkou Bomba
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Appolinaire Kene Dongmo
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon; Fondation Alango, Center for African Phytomedicine, P.O. Box, 371, Dschang, Cameroon.
| | - Rodolphe Chouna
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon; Fondation Alango, Center for African Phytomedicine, P.O. Box, 371, Dschang, Cameroon.
| | - Pepin Alango Nkeng-Efouet
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon; Fondation Alango, Center for African Phytomedicine, P.O. Box, 371, Dschang, Cameroon.
| | - Télesphore Benoît Nguelefack
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| |
Collapse
|
5
|
Taiwe GS, Kouamou ALN, Ambassa ARM, Menanga JR, Tchoya TB, Dzeufiet PDD. Evidence for the involvement of the GABA-ergic pathway in the anticonvulsant activity of the roots bark aqueous extract of Anthocleista djalonensis A. Chev. (Loganiaceae). J Basic Clin Physiol Pharmacol 2018; 28:425-435. [PMID: 28777735 DOI: 10.1515/jbcpp-2017-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/06/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The root bark of Anthocleista djalonensis A. Chev. (Loganiaceae) is widely used in traditional medicine in Northern Cameroon to treat epilepsy and related conditions, such as migraine, insomnia, dementia, anxiety, and mood disorders. METHODS To investigate the anticonvulsant effects and the possible mechanisms of this plant, an aqueous extract of Anthocleista djalonensis (AEAD) was evaluated by using animal models of bicuculline-, picrotoxin-, pilocarpine-, and pentylenetetrazole-induced convulsions. Their effects on brain γ-aminobutyric acid (GABA) concentration and GABA-T activity were also determined. RESULTS This extract significantly protected mice against bicuculline-induced motor seizures. It provided 80% protection against picrotoxin-induced tonic-clonic seizures, and strongly antagonized convulsions induced by pilocarpine. AEAD also protected 100% of mice against pentylenetetrazole-induced seizures. Flumazenil, a central benzodiazepine receptor antagonist and FG7142, a partial inverse agonist in the benzodiazepine site of the GABAA receptor complex, were found to have an inhibitory effect on the anticonvulsant action of AEAD in pentylenetetrazole test. Finally, the brain GABA concentration was significantly increased and GABA-T activity was inhibited by AEAD. CONCLUSIONS The effects of Anthocleista djalonensis suggested the presence of anticonvulsant properties that might involve an action on benzodiazepine and/or GABA sites in the GABAA receptor complex or by modulating GABA concentration in the central nervous system (CNS).
Collapse
|
6
|
Nkamguie Nkantchoua GC, Kameni Njapdounke JS, Jules Fifen J, Sotoing Taiwe G, Josiane Ojong L, Kavaye Kandeda A, Ngo Bum E. Anticonvulsant effects of Senna spectabilis on seizures induced by chemicals and maximal electroshock. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:18-28. [PMID: 28986332 DOI: 10.1016/j.jep.2017.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Senna spectabilis (Fabaceae) is one of the medicinal plants used in Cameroon by traditional healers to treat epilepsy, constipation, insomnia, anxiety. The present study aimed to investigate the anticonvulsant effects of Senna spectabilis decoction on seizures induced by maximal electroshock (MES), pentylenetetrazole (PTZ), pilocarpine (PC) and its possible action mechanisms in animal models using flumazenil (FLU), methyl-ß-carboline-3-carboxylate (BC) and bicuculline (BIC). Senna spectabilis decoction (106.5 and 213.0mg/kg) antagonized completely tonic-clonic hind limbs of mice induced by MES. The lowest plant dose (42.6mg/kg) provided 100% of protection against seizures induced by PTZ (70mg/kg). Administration of different doses of the plant decoction antagonized seizures induced by PC up to 75%, causing a dose dependent protection and reduced significantly the mortality rate induced by this convulsant. Both FLU and BC antagonize strongly the anticonvulsant effects of this plant and are unable to reverse totally diazepam or the plant decoction effects on inhibiting seizures. The animals did not present any sign of acute toxicity even at higher doses of the plant decoction. In conclusion, Senna spectabilis possesses an anticonvulsant activity. We showed that its decoction protects significantly mice against seizures induced by chemicals and MES, delays the onset time and reduces mortality rate in seizures-induced. It also appears that the oral administration of the decoction of S. spectabilis is more active than the intraperitoneal administration of the ethanolic extract on inhibiting seizures induced by MES and PTZ. Moreover, the plant decoction could interact with GABAA complex receptor probably on the GABA and benzodiazepines sites.
Collapse
Affiliation(s)
| | | | - Jean Jules Fifen
- Department of Physics, Faculty of Science, The University of Ngaoundere, Cameroon
| | - Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon
| | - Lucie Josiane Ojong
- Department of Biological Sciences, Faculty of Science, The University of Ngaoundere, Cameroon
| | - Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, The University of Ngaoundere, Cameroon
| |
Collapse
|
7
|
Thabet AA, Youssef FS, El-Shazly M, Singab ANB. Sterculia and Brachychiton: a comprehensive overview on their ethnopharmacology, biological activities, phytochemistry and the role of their gummy exudates in drug delivery. ACTA ACUST UNITED AC 2018; 70:450-474. [PMID: 29423957 DOI: 10.1111/jphp.12876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/16/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Sterculia and Brachychiton are two related genera (Malvaceae) containing more than 300 species. Most of these species are ornamental trees that are native to Australia and widely cultivated in many countries. Different members of the two genera were used by various cultures for medicinal and economical purposes. This review sheds light on the medicinal values and chemical composition of various species of these two genera. KEY FINDINGS Sterculia and Brachychiton species were used traditionally for the treatment of gastrointestinal disorders, microbial infection, skin diseases, inflammation and many other conditions. The seeds of various species were roasted and eaten by many traditional tribes. Plants from the two genera revealed their anti-inflammatory, antioxidant, antimicrobial, antidiabetic, antiulcer, insecticidal and analgesic activity. These activities may be attributed to the presence of a wide range of secondary metabolites as flavonoids, phenolic acids, coumarins, terpenoids particularly sesquiterpenes and triterpenes in addition to sterols and fatty acids. Moreover, the gummy exudates obtained from some members of these genera played an important role in different pharmaceutical dosage forms and drug-delivery systems. CONCLUSIONS More research is recommended on other species of Sterculia and Brachychiton to discover new molecular entities with potential biological and economic values.
Collapse
Affiliation(s)
- Amany A Thabet
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|