1
|
Asada S, Morita H, Mizuno T, Masuda T, Ueoka A, Miyamoto M, Kawada S, Nakagawa K, Nishii N. Syncope and loss of consciousness after implantation of a cardioverter-defibrillator in patients with Brugada syndrome: Prevalence and characteristics in long-term follow-up. Heart Rhythm O2 2023; 4:641-649. [PMID: 37936673 PMCID: PMC10626187 DOI: 10.1016/j.hroo.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Background Syncope is a significant prognostic factor in patients with Brugada syndrome (BrS). However, the risk of ventricular arrhythmia in patients with nonarrhythmic loss of consciousness (LOC) is similar to that in asymptomatic patients. LOC events after implantable cardioverter-defibrillator (ICD) implantation may provide insights into underlying causes of the initial LOC episode. Objective The purpose of this study was to examine LOC characteristics following ICD implantation. Methods We retrospectively analyzed 112 patients with BrS (mean age 47 years; 111 men) who were treated with an ICD. The patients were classified into 3 groups based on symptoms at implantation: asymptomatic (35 patients); LOC (46 patients); and ventricular tachyarrhythmia (VTA) (31 patients). We evaluated the incidence and cause of LOC during long-term follow-up after ICD implantation. Results During mean follow-up of 12.2 years, 41 patients (37%) experienced LOC after ICD implantation. Arrhythmic LOC occurred in 5 asymptomatic patients, 14 LOC patients, and 16 patients with VTA. Nonarrhythmic LOC, similar to the initial episode, occurred after ICD implantation in 6 patients with prior LOC (2 with neurally mediated syncope and 4 with epilepsy). Most epileptic patients experienced LOC during rest or sleeping, and did not show an abnormal encephalogram during initial evaluation of the LOC episodes. Conclusion After ICD implantation, 13% of patients had nonarrhythmic LOC similar to the initial episode. Accurate classification of LOC based on a detailed medical history is important for risk stratification, although distinguishing arrhythmic LOC from epilepsy-related LOC episodes can be challenging depending on the circumstances and characteristics of the LOC event.
Collapse
Affiliation(s)
- Saori Asada
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomofumi Mizuno
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuro Masuda
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Ueoka
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masakazu Miyamoto
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kawada
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Nakagawa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuhiro Nishii
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Megagiannis P, Suresh R, Rouleau GA, Zhou Y. Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Adv Drug Deliv Rev 2022; 191:114562. [PMID: 36183904 DOI: 10.1016/j.addr.2022.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Neurodevelopmental Disorders (NDDs) encompass a broad spectrum of conditions resulting from atypical brain development. Over the past decades, we have had the fortune to witness enormous progress in diagnosis, etiology discovery, modeling, and mechanistic understanding of NDDs from both fundamental and clinical research. Here, we review recent neurobiological advances from experimental models of NDDs. We introduce several examples and highlight breakthroughs in reversal studies of phenotypes using genetically engineered models of NDDs. The in-depth understanding of brain pathophysiology underlying NDDs and evaluations of reversibility in animal models paves the foundation for discovering novel treatment options. We discuss how the expanding property of cutting-edge technologies, such as gene editing and AAV-mediated gene delivery, are leveraged in animal models for the therapeutic development of NDDs. We envision opportunities and challenges toward faithful modeling and fruitful clinical translation.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
3
|
Zhu Z, Bolt E, Newmaster K, Osei-Bonsu W, Cohen S, Cuddapah VA, Gupta S, Paudel S, Samanta D, Dang LT, Carney PR, Naik S. SCN1B Genetic Variants: A Review of the Spectrum of Clinical Phenotypes and a Report of Early Myoclonic Encephalopathy. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1507. [PMID: 36291443 PMCID: PMC9600564 DOI: 10.3390/children9101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Background: Pathogenic variants in SCN1B, the gene encoding voltage-gated sodium channel b1/b1B subunits are associated with a spectrum of epileptic disorders. This study describes a child with early myoclonic encephalopathy and a compound heterozygous variant in the SCN1B gene (p.Arg85Cys and c.3G>C/p.Met1), along with the child’s clinical response to anti-seizure medications (ASMs) and the ketogenic diet. We reviewed the current clinical literature pertinent to SCN1B-related epilepsy. Methods: We described the evaluation and management of a patient with SCN1B-related developmental and epileptic encephalopathy (DEE). We used the Medline and Pubmed databases to review the various neurological manifestations associated with SCN1B genetic variants, and summarize the functional studies performed on SCN1B variants. Results: We identified 20 families and six individuals (including the index case described herein) reported to have SCN1B-related epilepsy. Individuals with monoallelic pathogenic variants in SCN1B often present with genetic epilepsy with febrile seizures plus (GEFS+), while those with biallelic pathogenic variants may present with developmental and epileptic encephalopathy (DEE). Individuals with DEE present with seizures of various semiologies (commonly myoclonic seizures) and status epilepticus at early infancy and are treated with various antiseizure medications. In our index case, adjunctive fenfluramine was started at 8 months of age at 0.2 mg/kg/day with gradual incremental increases to the final dose of 0.7 mg/kg/day over 5 weeks. Fenfluramine was effective in the treatment of seizures, resulting in a 50% reduction in myoclonic seizures, status epilepticus, and generalized tonic-clonic seizures, as well as a 70−90% reduction in focal seizures, with no significant adverse effects. Following the initiation of fenfluramine at eight months of age, there was also a 50% reduction in the rate of hospitalizations. Conclusions: SCN1B pathogenic variants cause epilepsy and neurodevelopmental impairment with variable expressivity and incomplete penetrance. The severity of disease is associated with the zygosity of the pathogenic variants. Biallelic variants in SCN1B can result in early myoclonic encephalopathy, and adjunctive treatment with fenfluramine may be an effective treatment for SCN1B-related DEE. Further research on the efficacy and safety of using newer ASMs, such as fenfluramine in patients under the age of 2 years is needed.
Collapse
Affiliation(s)
- Zahra Zhu
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Elizabeth Bolt
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Kyra Newmaster
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Wendy Osei-Bonsu
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Stacey Cohen
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vishnu Anand Cuddapah
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sita Paudel
- Department of Pediatrics and Neurology, Penn State Health Milton Hershey Medical Center, Hershey, PA 17033, USA
| | - Debopam Samanta
- Division of Pediatric Neurology, Arkansas Children’s Hospital, Little Rock, AR 72202, USA
| | - Louis T. Dang
- Department of Pediatrics, Division of Pediatric Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul R. Carney
- Pediatric Neurology Division, University of Missouri Health Care, Columbia, MO 65212, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
4
|
PAEDIATRIC SUDDEN UNEXPECTED DEATH IN EPILEPSY: FROM PATHOPHYSIOLOGY TO PREVENTION. Seizure 2022; 101:83-95. [DOI: 10.1016/j.seizure.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
|
5
|
AUTONOMIC DYSREGULATION IN SUDEP: BASIC AND CLINICAL IMPLICATIONS. Auton Neurosci 2022; 240:102982. [DOI: 10.1016/j.autneu.2022.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Sahly AN, Shevell M, Sadleir LG, Myers KA. SUDEP risk and autonomic dysfunction in genetic epilepsies. Auton Neurosci 2021; 237:102907. [PMID: 34773737 DOI: 10.1016/j.autneu.2021.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023]
Abstract
The underlying pathophysiology of sudden unexpected death in epilepsy (SUDEP) remains unclear. This phenomenon is likely multifactorial, and there is considerable evidence that genetic factors play a role. There are certain genetic causes of epilepsy in which the risk of SUDEP appears to be increased relative to epilepsy overall. For individuals with pathogenic variants in genes including SCN1A, SCN1B, SCN8A, SCN2A, GNB5, KCNA1 and DEPDC5, there are varying degrees of evidence to suggest an increased risk for sudden death. Why the risk for sudden death is higher is not completely clear; however, in many cases pathogenic variants in these genes are also associated with autonomic dysfunction, which is hypothesized as a contributing factor to SUDEP. We review the evidence for increased SUDEP risk for patients with epilepsy due to pathogenic variants in these genes, and also discuss what is known about autonomic dysfunction in these contexts.
Collapse
Affiliation(s)
- Ahmed N Sahly
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Michael Shevell
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Medical Centre, Montreal, Quebec, Canada
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Medical Centre, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Xu YX, Zhong JM. [Early identification and diagnosis of epilepsy related to fever sensitivity]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:749-754. [PMID: 34266536 PMCID: PMC8292662 DOI: 10.7499/j.issn.1008-8830.2105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Febrile seizures are the most common nervous system disease in childhood, and most children have a good prognosis. However, some epilepsy cases are easily induced by fever and are characterized by "fever sensitivity", and it is difficult to differentiate such cases from febrile seizures. Epilepsy related to fever sensitivity includes hereditary epilepsy with febrile seizures plus, Dravet syndrome, and PCDH19 gene-related epilepsy. This article mainly describes the clinical manifestations of these three types of epilepsy and summarizes their clinical features in the early stage of disease onset, so as to achieve early identification, early diagnosis, and early intervention to improve prognosis.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Jian-Min Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| |
Collapse
|
8
|
Sullo F, Pasquetti E, Patanè F, Lo Bianco M, Marino SD, Polizzi A, Falsaperla R, Ruggieri M, Zanghì A, Praticò AD. SCN1A and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpilepsy is one of the most common neurological disorders, with a lifetime incidence of 1 in 26. Approximately two-thirds of epilepsy has a substantial genetic component in its etiology. As a result, simultaneous screening for mutations in multiple genes and performing whole exome sequencing (WES) are becoming very frequent in the clinical evaluation of children with epilepsy. In this setting, mutations in voltage-gated sodium channel (SCN) α-subunit genes are the most commonly identified cause of epilepsy, with sodium channel genes (i.e., SCN1A, SCN2A, SCN8A) being the most frequently identified causative genes. SCN1A mutations result in a wide spectrum of epilepsy phenotypes ranging from simple febrile seizures to Dravet syndrome, a severe epileptic encephalopathy. In case of mutation of SCN1A, it is also possible to observe behavioral alterations, such as impulsivity, inattentiveness, and distractibility, which can be framed in an attention deficit hyperactivity disorder (ADHD) like phenotype. Despite more than 1,200 SCN1A mutations being reported, it is not possible to assess a clear phenotype–genotype correlations. Treatment remains a challenge and seizure control is often partial and transitory.
Collapse
Affiliation(s)
- Federica Sullo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Pasquetti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Patanè
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Simona D. Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Martino Ruggieri
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Pasquetti E, Lo Bianco M, Sullo F, Patanè F, Sciuto L, Polizzi A, Praticò AD, Zanghì A, Falsaperla R. SCN1B Gene: A Close Relative to SCN1A. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractOne of the first reported genes associated with epilepsy was SCN1B, which encodes for β-subunit of voltage-gated sodium channel of excitable cells and it is critical for neuronal function in both central and peripheral nervous system. β-subunits modulate the expression levels and functional properties of sodium channels and though their immunoglobulin domains may mediate interactions between channels and other proteins. Traditionally, SCN1B mutations were associated with generalized epilepsy with febrile seizures plus, a familial epilepsy syndrome characterized by heterogeneous phenotypes including febrile seizures (FS), febrile seizures plus (FS + ), mild generalized epilepsies, and severe epileptic encephalopathies. Throughout the years, SCN1B mutations have been also associated with Dravet syndrome and, more recently, with developmental and epileptic encephalopathies, expanding the spectrum associated with this gene mutations to more severe phenotypes.
Collapse
Affiliation(s)
- Elisa Pasquetti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Sullo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Patanè
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
10
|
De Liso P, Pironi V, Mastrangelo M, Battaglia D, Craiu D, Trivisano M, Specchio N, Nabbout R, Vigevano F. Fatal Status Epilepticus in Dravet Syndrome. Brain Sci 2020; 10:brainsci10110889. [PMID: 33238377 PMCID: PMC7700506 DOI: 10.3390/brainsci10110889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023] Open
Abstract
Dravet Syndrome (DS) is burdened by high epilepsy-related premature mortality due to status epilepticus (SE). We surveyed centres within Europe through the Dravet Italia Onlus and EpiCARE network (European Reference Network for Rare and Complex Epilepsies). We collated responses on seven DS SCN1A+ patients who died following refractory SE (mean age 6.9 year, range 1.3–23.4 year); six were on valproate, clobazam, and stiripentol. All patients had previous SE. Fatal SE was always triggered by fever: either respiratory infection or one case of hexavalent vaccination. SE lasted between 80 min and 9 h and all patients received IV benzodiazepines. Four patients died during or within hours of SE; in three patients, SE was followed by coma with death occurring after 13–60 days. Our survey supports the hypothesis that unresponsive fever is a core characteristic feature of acute encephalopathy. We highlight the need for management protocols for prolonged seizures and SE in DS.
Collapse
Affiliation(s)
- Paola De Liso
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
| | - Virginia Pironi
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health, Institute of Pediatrics, Policlinico Universitario Gemelli Foundation, Catholic University of Rome, 00168 Rome, Italy
| | | | - Domenica Battaglia
- Department of Child Neurology and Psychiatry, Policlinico Universitario Gemelli Foundation, Catholic University of Rome, 00153 Rome, Italy;
| | - Dana Craiu
- Department of Neurology, Paediatric Neurology, Psychiatry, Neurosurgery, “Carol Davila” University of Medicine of Bucharest, Full Member of European Reference Network EpiCARE, 050474 Bucharest, Romania;
| | - Marina Trivisano
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
| | - Rima Nabbout
- Centre for Rare Epilepsies, Department of Paediatric Neurology, Necker-Enfants Malades Hospital, Imagine Institute, INSERMU1163, Paris Descartes University, Full Member of European Reference Network EpiCARE, 75006 Paris, France;
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (P.D.L.); (V.P.); (M.T.); (N.S.)
- Correspondence:
| |
Collapse
|
11
|
Fortin O, Vincelette C, Chénier S, Ghais A, Shevell MI, Simard-Tremblay E, Myers KA. Copy number variation in genetic epilepsy with febrile seizures plus. Eur J Paediatr Neurol 2020; 27:111-115. [PMID: 32595013 DOI: 10.1016/j.ejpn.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
Abstract
AIM Genetic epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome in which affected individuals may have a variety of epilepsy phenotypes, the most common being febrile seizures (FS) and febrile seizures plus (FS+). We investigated the possible contribution of copy number variation to GEFS+. METHOD We searched our epilepsy research database for patients in GEFS + families who underwent chromosomal microarray analysis. We reviewed the clinical features and results of genetic testing in these families. RESULTS Of twelve families with available microarray data, four had at least one copy number variant (CNV) identified. In Family 1, the proband had a maternally-inherited 15q11.2 deletion. In Family 5, four different CNVs were identified, variably present in the affected individuals; this included a 19p13.3 deletion affecting CACNA1A. Finally, in both Families 9 and 10, the proband had Dravet syndrome with pathogenic SCN1A variant, as well as a CNV (10q11.22 duplication in Family 9 and 22q11.2 deletion in Family 10). INTERPRETATION The significance of these specific variants is difficult to precisely determine; however, there appeared to be an overrepresentation of CNVs in this small cohort. These findings suggest chromosomal microarray analysis could have clinical utility as part of the workup in GEFS + families.
Collapse
Affiliation(s)
- Olivier Fortin
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Christian Vincelette
- School of Nursing, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien Chénier
- Department of Pediatrics, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ahmad Ghais
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Michael I Shevell
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology & Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Elisabeth Simard-Tremblay
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology & Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Kenneth A Myers
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology & Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Matthews E, Balestrini S, Sisodiya SM, Hanna MG. Muscle and brain sodium channelopathies: genetic causes, clinical phenotypes, and management approaches. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:536-547. [PMID: 32142633 DOI: 10.1016/s2352-4642(19)30425-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023]
Abstract
Voltage-gated sodium channels are essential for excitability of skeletal muscle fibres and neurons. An increasing number of disabling or fatal paediatric neurological disorders linked to mutations of voltage-gated sodium channel genes are recognised. Muscle phenotypes include episodic paralysis, myotonia, neonatal hypotonia, respiratory compromise, laryngospasm or stridor, congenital myasthenia, and myopathy. Evidence suggests a possible link between sodium channel dysfunction and sudden infant death. Increasingly recognised phenotypes of brain sodium channelopathies include several epilepsy disorders and complex encephalopathies. Together, these early-onset muscle and brain phenotypes have a substantial morbidity and a considerable mortality. Important advances in understanding the pathophysiological mechanisms underlying these channelopathies have helped to identify effective targeted therapies. The availability of effective treatments underlines the importance of increasing clinical awareness and the need to achieve a precise genetic diagnosis. In this Review, we describe the expanded range of phenotypes of muscle and brain sodium channelopathies and the underlying knowledge regarding mechanisms of sodium channel dysfunction. We also outline a diagnostic approach and review the available treatment options.
Collapse
Affiliation(s)
- Emma Matthews
- Department of Neuromuscular Diseases, Medical Research Council Centre for Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Service Foundation Trust, London, UK.
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK; Chalfont Centre for Epilepsy, Buckinghamshire, UK; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK; Chalfont Centre for Epilepsy, Buckinghamshire, UK; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, Medical Research Council Centre for Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Service Foundation Trust, London, UK
| |
Collapse
|