1
|
Li Z, Zhang H, Niu S, Xing Y. Localizing epileptogenic zones with high-frequency oscillations and directed connectivity. Seizure 2023; 111:9-16. [PMID: 37487273 DOI: 10.1016/j.seizure.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Precise localization of the epileptogenic zone (EZ) is essential for epilepsy surgery. Existing methods often fail to detect slow onset patterns or similar neural activities presented in the recorded signals. To address this issue, we propose a new measure to quantify epileptogenicity, i.e., the connectivity high-frequency epileptogenicity index (cHFEI). METHODS The cHFEI method combines directed connectivity and high-frequency oscillations (HFOs) to measure the epileptogenicity of regions involved in a brain network. By applying this method to stereoelectroencephalography (SEEG) recordings of 49 seizures in 20 patients, we calculated the accuracy, sensitivity, and precision with a visually identified epileptogenic zone as a reference. The performance was evaluated by the confusion matrix and the area under the receiver operating characteristic (ROC) curve. RESULTS Epileptic network estimation based on cHFEI successfully distinguished brain regions involved in seizure onset from the propagation network. Moreover, cHFEI outperformed other existing detection methods in the estimation of EZs in all patients, with an average area under the ROC curve of 0.88 and an accuracy of 0.85. CONCLUSIONS cHFEI can characterize EZ in a robust manner despite various seizure onset patterns and has potential application in epilepsy therapy.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of information transmission and signal processing, Yanshan University, Qinhuangdao 066004, China.
| | - Hao Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shipeng Niu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yanyu Xing
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
2
|
Gagliano L, Chang A, Shokooh LA, Toffa DH, Lesage F, Sawan M, Nguyen DK, Assi EB. Cross-bispectrum connectivity of intracranial EEG: A novel approach to seizure onset zone localization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082787 DOI: 10.1109/embc40787.2023.10340885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Connectivity analyses of intracranial electroencephalography (iEEG) could guide surgical planning for epilepsy surgery by improving the delineation of the seizure onset zone. Traditional approaches fail to quantify important interactions between frequency components. To assess if effective connectivity based on cross-bispectrum -a measure of nonlinear multivariate cross-frequency coupling- can quantitatively identify generators of seizure activity, cross-bispectrum connectivity between channels was computed from iEEG recordings of 5 patients (34 seizures) with good postsurgical outcome. Personalized thresholds of 50% and 80% of the maximum coupling values were used to identify generating electrode channels. In all patients, outflow coupling between α (8-15 Hz) and β (16-31 Hz) frequencies identified at least one electrode inside the resected seizure onset zone. With the 50% and 80% thresholds respectively, an average of 5 (44.7%; specificity = 82.6%) and 2 (22.5%; specificity = 99.0%) resected electrodes were correctly identified. Results show promise for the automatic identification of the seizure onset zone based on cross-bispectrum connectivity analysis.
Collapse
|
3
|
Nahvi M, Ardeshir G, Ezoji M, Tafakhori A, Shafiee S, Babajani-Feremi A. An application of dynamical directed connectivity of ictal intracranial EEG recordings in seizure onset zone localization. J Neurosci Methods 2023; 386:109775. [PMID: 36596400 DOI: 10.1016/j.jneumeth.2022.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/26/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Identification of the seizure onset zone (SOZ) is a challenging task in epilepsy surgery. Patients with epilepsy have an altered brain network, allowing connectivity-based analyses to have a great potential in SOZ identification. We investigated a dynamical directed connectivity analysis utilizing ictal intracranial electroencephalographic (iEEG) recordings and proposed an algorithm for SOZ identification based on grouping iEEG contacts. NEW METHODS Granger Causality was used for directed connectivity analysis in this study. The intracranial contacts were grouped into visually detected contacts (VDCs), which were identified as SOZ by epileptologists, and non-resected contacts (NRCs). The intragroup and intergroup directed connectivity for VDCs and NRCs were calculated around seizure onset. We then proposed an algorithm for SOZ identification based on the cross-correlation of intragroup outflow and inflow of SOZ candidate contacts. RESULTS Our results revealed that the intragroup connectivity of VDCs (VDC→VDC) was significantly larger than the intragroup connectivity of NRCs (NRC→NRC) and the intergroup connectivity between NRCs and VDCs (NRC→VDC) around seizure onset. We found that the proposed algorithm had 90.1 % accuracy for SOZ identification in the seizure-free patients. COMPARISON WITH EXISTING METHODS The existing connectivity-based methods for SOZ identification often use either outflow or inflow. In this study, SOZ contacts were identified by integrating outflow and inflow based on the cross correlation between these two measures. CONCLUSIONS The proposed group-based dynamical connectivity analysis in this study can aid our understanding of underlying seizure network and may be used to assist in identifying the SOZ contacts before epilepsy surgery.
Collapse
Affiliation(s)
| | | | - Mehdi Ezoji
- Babol Noshirvani University of Technology, Babol, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Shafiee
- Department of Neurosurgery, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Babajani-Feremi
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Gunnarsdottir KM, Li A, Smith RJ, Kang JY, Korzeniewska A, Crone NE, Rouse AG, Cheng JJ, Kinsman MJ, Landazuri P, Uysal U, Ulloa CM, Cameron N, Cajigas I, Jagid J, Kanner A, Elarjani T, Bicchi MM, Inati S, Zaghloul KA, Boerwinkle VL, Wyckoff S, Barot N, Gonzalez-Martinez J, Sarma SV. Source-sink connectivity: a novel interictal EEG marker for seizure localization. Brain 2022; 145:3901-3915. [PMID: 36412516 PMCID: PMC10200292 DOI: 10.1093/brain/awac300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 07/26/2023] Open
Abstract
Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically validated biological markers of the epileptogenic zone exist. Localizing the epileptogenic zone is a costly and time-consuming process, which often requires days to weeks of intracranial EEG (iEEG) monitoring. Clinicians visually inspect iEEG data to identify abnormal activity on individual channels occurring immediately before seizures or spikes that occur interictally (i.e. between seizures). In the end, the clinical standard mainly relies on a small proportion of the iEEG data captured to assist in epileptogenic zone localization (minutes of seizure data versus days of recordings), missing opportunities to leverage these largely ignored interictal data to better diagnose and treat patients. IEEG offers a unique opportunity to observe epileptic cortical network dynamics but waiting for seizures increases patient risks associated with invasive monitoring. In this study, we aimed to leverage interictal iEEG data by developing a new network-based interictal iEEG marker of the epileptogenic zone. We hypothesized that when a patient is not clinically seizing, it is because the epileptogenic zone is inhibited by other regions. We developed an algorithm that identifies two groups of nodes from the interictal iEEG network: those that are continuously inhibiting a set of neighbouring nodes ('sources') and the inhibited nodes themselves ('sinks'). Specifically, patient-specific dynamical network models were estimated from minutes of iEEG and their connectivity properties revealed top sources and sinks in the network, with each node being quantified by source-sink metrics. We validated the algorithm in a retrospective analysis of 65 patients. The source-sink metrics identified epileptogenic regions with 73% accuracy and clinicians agreed with the algorithm in 93% of seizure-free patients. The algorithm was further validated by using the metrics of the annotated epileptogenic zone to predict surgical outcomes. The source-sink metrics predicted outcomes with an accuracy of 79% compared to an accuracy of 43% for clinicians' predictions (surgical success rate of this dataset). In failed outcomes, we identified brain regions with high metrics that were untreated. When compared with high frequency oscillations, the most commonly proposed interictal iEEG feature for epileptogenic zone localization, source-sink metrics outperformed in predictive power (by a factor of 1.2), suggesting they may be an interictal iEEG fingerprint of the epileptogenic zone.
Collapse
Affiliation(s)
| | - Adam Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joon-Yi Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jennifer J Cheng
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J Kinsman
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patrick Landazuri
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Utku Uysal
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Carol M Ulloa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nathaniel Cameron
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan Jagid
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andres Kanner
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Turki Elarjani
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Manuel Melo Bicchi
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sara Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Varina L Boerwinkle
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Sarah Wyckoff
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Niravkumar Barot
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Mirchi N, Warsi NM, Zhang F, Wong SM, Suresh H, Mithani K, Erdman L, Ibrahim GM. Decoding Intracranial EEG With Machine Learning: A Systematic Review. Front Hum Neurosci 2022; 16:913777. [PMID: 35832872 PMCID: PMC9271576 DOI: 10.3389/fnhum.2022.913777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in intracranial electroencephalography (iEEG) and neurophysiology have enabled the study of previously inaccessible brain regions with high fidelity temporal and spatial resolution. Studies of iEEG have revealed a rich neural code subserving healthy brain function and which fails in disease states. Machine learning (ML), a form of artificial intelligence, is a modern tool that may be able to better decode complex neural signals and enhance interpretation of these data. To date, a number of publications have applied ML to iEEG, but clinician awareness of these techniques and their relevance to neurosurgery, has been limited. The present work presents a review of existing applications of ML techniques in iEEG data, discusses the relative merits and limitations of the various approaches, and examines potential avenues for clinical translation in neurosurgery. One-hundred-seven articles examining artificial intelligence applications to iEEG were identified from 3 databases. Clinical applications of ML from these articles were categorized into 4 domains: i) seizure analysis, ii) motor tasks, iii) cognitive assessment, and iv) sleep staging. The review revealed that supervised algorithms were most commonly used across studies and often leveraged publicly available timeseries datasets. We conclude with recommendations for future work and potential clinical applications.
Collapse
Affiliation(s)
- Nykan Mirchi
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nebras M. Warsi
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Frederick Zhang
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Simeon M. Wong
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Karim Mithani
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Lauren Erdman
- Vector Institute for Artificial Intelligence, MaRS Centre, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | - George M. Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Li P, Li C, Bore JC, Si Y, Li F, Cao Z, Zhang Y, Wang G, Zhang Z, Yao D, Xu P. L1-norm based time-varying brain neural network and its application to dynamic analysis for motor imagery. J Neural Eng 2022; 19. [PMID: 35234668 DOI: 10.1088/1741-2552/ac59a4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE EEG-based motor imagery (MI) brain-computer interface offers a promising way to improve the efficiency of motor rehabilitation and motor skill learning. In recent years, the power of dynamic network analysis for MI classification has been proved. In fact, its usability mainly depends on the accurate estimation of brain connection. However, traditional dynamic network estimation strategies such as adaptive directed transfer function (ADTF) are designed in the L2-norm. Usually, they estimate a series of pseudo connections caused by outliers, which results in biased features and further limits its online application. Thus, how to accurately infer dynamic causal relationship under outlier influence is urgent. APPROACH In this work, we proposed a novel ADTF, which solves the dynamic system in the L1-norm space (L1-ADTF), so as to restrict the outlier influence. To enhance its convergence, we designed an iteration strategy with the alternating direction method of multipliers (ADMM), which could be used for the solution of the dynamic state-space model restricted in the L1-norm space. Furthermore, we compared L1-ADTF to traditional ADTF and its dual extension across both simulation and real EEG experiments. MAIN RESULTS A quantitative comparison between L1-ADTF and other ADTFs in simulation studies demonstrates that fewer bias errors and more desirable dynamic state transformation patterns can be captured by the L1-ADTF. Application to real MI EEG datasets seriously noised by ocular artifacts also reveals the efficiency of the proposed L1-ADTF approach to extract the time-varying brain neural network patterns, even when more complex noises are involved. SIGNIFICANCE The L1-ADTF may not only be capable of tracking time-varying brain network state drifts robustly but may also be useful in solving a wide range of dynamic systems such as trajectory tracking problems and dynamic neural networks.
Collapse
Affiliation(s)
- Peiyang Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, NO.2,Chongwen Road,Nan'an District, Chongqing, China, Chongqing, 400065, CHINA
| | - Cunbo Li
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Joyce Chelangat Bore
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Yajing Si
- Department of Psychology, Xinxiang Medical University, No. 601, Jinsui Avenue, Hongqi District, Xinxiang, Henan, 453003, CHINA
| | - Fali Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 610054, CHINA
| | - Zehong Cao
- University of South Australia, Adelaide, SA 5095, Australia, Adelaide, South Australia, 5001, AUSTRALIA
| | - Yangsong Zhang
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang,Sichuan, P.R.China, Mianyang, 621010, CHINA
| | - Gang Wang
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 610054, CHINA
| | - Zhijun Zhang
- South China University of Technology, 777 Xingye Avenue East, Panyu District, Guangzhou, Guangzhou, 510640, CHINA
| | - Dezhong Yao
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| | - Peng Xu
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, Chengdu, 611731, CHINA
| |
Collapse
|
7
|
Structural Connectivity Alterations in Operculo-Insular Epilepsy. Brain Sci 2021; 11:brainsci11081041. [PMID: 34439659 PMCID: PMC8392362 DOI: 10.3390/brainsci11081041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Operculo-insular epilepsy (OIE) is an under-recognized condition that can mimic temporal and extratemporal epilepsies. Previous studies have revealed structural connectivity changes in the epileptic network of focal epilepsy. However, most reports use the debated streamline-count to quantify ‘connectivity strength’ and rely on standard tracking algorithms. We propose a sophisticated cutting-edge method that is robust to crossing fibers, optimizes cortical coverage, and assigns an accurate microstructure-reflecting quantitative conectivity marker, namely the COMMIT (Convex Optimization Modeling for Microstructure Informed Tractography)-weight. Using our pipeline, we report the connectivity alterations in OIE. COMMIT-weighted matrices were created in all participants (nine patients with OIE, eight patients with temporal lobe epilepsy (TLE), and 22 healthy controls (HC)). In the OIE group, widespread increases in ‘connectivity strength’ were observed bilaterally. In OIE patients, ‘hyperconnections’ were observed between the insula and the pregenual cingulate gyrus (OIE group vs. HC group) and between insular subregions (OIE vs. TLE). Graph theoretic analyses revealed higher connectivity within insular subregions of OIE patients (OIE vs. TLE). We reveal, for the first time, the structural connectivity distribution in OIE. The observed pattern of connectivity in OIE likely reflects a diffuse epileptic network incorporating insular-connected regions and may represent a structural signature and diagnostic biomarker.
Collapse
|
8
|
Zhang S, Cao C, Quinn A, Vivekananda U, Zhan S, Liu W, Sun B, Woolrich M, Lu Q, Litvak V. Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model. Neuroimage 2021; 233:117923. [PMID: 33662572 PMCID: PMC8204269 DOI: 10.1016/j.neuroimage.2021.117923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Intracranial electroencephalography (iEEG) recordings are used for clinical evaluation prior to surgical resection of the focus of epileptic seizures and also provide a window into normal brain function. A major difficulty with interpreting iEEG results at the group level is inconsistent placement of electrodes between subjects making it difficult to select contacts that correspond to the same functional areas. Recent work using time delay embedded hidden Markov model (HMM) applied to magnetoencephalography (MEG) resting data revealed a distinct set of brain states with each state engaging a specific set of cortical regions. Here we use a rare group dataset with simultaneously acquired resting iEEG and MEG to test whether there is correspondence between HMM states and iEEG power changes that would allow classifying iEEG contacts into functional clusters. METHODS Simultaneous MEG-iEEG recordings were performed at rest on 11 patients with epilepsy whose intracranial electrodes were implanted for pre-surgical evaluation. Pre-processed MEG sensor data was projected to source space. Time delay embedded HMM was then applied to MEG time series. At the same time, iEEG time series were analyzed with time-frequency decomposition to obtain spectral power changes with time. To relate MEG and iEEG results, correlations were computed between HMM probability time courses of state activation and iEEG power time course from the mid contact pair for each electrode in equally spaced frequency bins and presented as correlation spectra for the respective states and iEEG channels. Association of iEEG electrodes with HMM states based on significant correlations was compared to that based on the distance to peaks in subject-specific state topographies. RESULTS Five HMM states were inferred from MEG. Two of them corresponded to the left and the right temporal activations and had a spectral signature primarily in the theta/alpha frequency band. All the electrodes had significant correlations with at least one of the states (p < 0.05 uncorrected) and for 27/50 electrodes these survived within-subject FDR correction (q < 0.05). These correlations peaked in the theta/alpha band. There was a highly significant dependence between the association of states and electrodes based on functional correlations and that based on spatial proximity (p = 5.6e-6,χ2 test for independence). Despite the potentially atypical functional anatomy and physiological abnormalities related to epilepsy, HMM model estimated from the patient group was very similar to that estimated from healthy subjects. CONCLUSION Epilepsy does not preclude HMM analysis of interictal data. The resulting group functional states are highly similar to those reported for healthy controls. Power changes recorded with iEEG correlate with HMM state time courses in the alpha-theta band and the presence of this correlation can be related to the spatial location of electrode contacts close to the individual peaks of the corresponding state topographies. Thus, the hypothesized relation between iEEG contacts and HMM states exists and HMM could be further explored as a method for identifying comparable iEEG channels across subjects for the purposes of group analysis.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Chunyan Cao
- Department of Neurosurgery, affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew Quinn
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, UK
| | - Umesh Vivekananda
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Shikun Zhan
- Department of Neurosurgery, affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, UK
| | - Qing Lu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
9
|
Hamavar R, Asl BM. Seizure onset detection based on detection of changes in brain activity quantified by evolutionary game theory model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 199:105899. [PMID: 33360360 DOI: 10.1016/j.cmpb.2020.105899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is one of the most common diseases of the nervous system, affecting about 1% of the world's population. The unpredictable nature of the epilepsy seizures deprives the patients and those around them of living a normal life. Therefore, the development of new methods that can help these patients will increase the life quality of these people and can bring a lot of economic savings in the health sector. METHODS In this study, we introduced a new framework for seizure onset detection. Our framework provides a new modelling for brain activity using evolutionary game theory and Kalman filter. If the patterns in the electroencephalogram (EEG) signal violate the predicted patterns by the proposed model, using a novel detection algorithm that has been also introduced in this paper, it can be determined whether the observed violation is the result of the onset of an epileptic seizure or not. RESULTS The proposed approach was able to detect the onset of all the seizures in CHB-MIT dataset with an average delay of -0.8 s and a false alarm of 0.39 per hour. Also, our proposed approach is about 20 times faster compared to recent studies. CONCLUSIONS The experimental results of applying the proposed framework on the CHB-MIT dataset show that our framework not only performed well with respect to the sensitivity, delay, and false alarm metrics but also performed much better in terms of run time compared to recent studies. This appropriate run time, along with other suitable metrics, makes it possible to use this framework in many cases where processing power or energy is limited and to think about creating new and inexpensive solutions for the treatment and care of people diagnosed with epilepsy.
Collapse
Affiliation(s)
- Ramtin Hamavar
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Babak Mohammadzadeh Asl
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Bou Assi E, Zerouali Y, Robert M, Lesage F, Pouliot P, Nguyen DK. Large-Scale Desynchronization During Interictal Epileptic Discharges Recorded With Intracranial EEG. Front Neurol 2020; 11:529460. [PMID: 33424733 PMCID: PMC7785800 DOI: 10.3389/fneur.2020.529460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
It is increasingly recognized that deep understanding of epileptic seizures requires both localizing and characterizing the functional network of the region where they are initiated, i. e., the epileptic focus. Previous investigations of the epileptogenic focus' functional connectivity have yielded contrasting results, reporting both pathological increases and decreases during resting periods and seizures. In this study, we shifted paradigm to investigate the time course of connectivity in relation to interictal epileptiform discharges. We recruited 35 epileptic patients undergoing intracranial EEG (iEEG) investigation as part of their presurgical evaluation. For each patient, 50 interictal epileptic discharges (IEDs) were marked and iEEG signals were epoched around those markers. Signals were narrow-band filtered and time resolved phase-locking values were computed to track the dynamics of functional connectivity during IEDs. Results show that IEDs are associated with a transient decrease in global functional connectivity, time-locked to the peak of the discharge and specific to the high range of the gamma frequency band. Disruption of the long-range connectivity between the epileptic focus and other brain areas might be an important process for the generation of epileptic activity. Transient desynchronization could be a potential biomarker of the epileptogenic focus since 1) the functional connectivity involving the focus decreases significantly more than the connectivity outside the focus and 2) patients with good surgical outcome appear to have a significantly more disconnected focus than patients with bad outcomes.
Collapse
Affiliation(s)
- Elie Bou Assi
- University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal, QC, Canada.,Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Younes Zerouali
- University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal, QC, Canada.,Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Manon Robert
- University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal, QC, Canada
| | - Frederic Lesage
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Philippe Pouliot
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Dang K Nguyen
- University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal, QC, Canada.,Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
11
|
An N, Ye X, Liu Q, Xu J, Zhang P. Localization of the epileptogenic zone based on ictal stereo-electroencephalogram: Brain network and single-channel signal feature analysis. Epilepsy Res 2020; 167:106475. [PMID: 33045665 DOI: 10.1016/j.eplepsyres.2020.106475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023]
Abstract
Accurate localization of the epileptogenic zone (EZ) is crucial for refractory focal epilepsy patients to achieve freedom from seizures following epilepsy surgery. In this study, ictal stereo-electroencephalography data from 35 patients with refractory focal epilepsy were analyzed. Effective networks based on partial directed coherence were analyzed, and a gray level co-occurrence matrix was applied to extract the time-varying features of the in-degree. These features, combined with the single-channel signal time-frequency features, including approximate entropy and line length, were used to localize the EZ based on a cluster algorithm. For all seizure-free patients (n = 23), the proposed method was effective in identifying the clinical-EZ-contacts and clinical-EZ-blocks, with an F1-score of 62.47 % and 72.18 %, respectively. The sensitivity was 96.00 % for the clinical-EZ-block identification, which provided the information for the decision-making of clinicians, prompting clinicians to focus on the identified EZ-blocks and their nearby contacts. The agreement between the EZ identified by the proposed method and the clinical-EZ was worse for non-seizure-free patients (n = 12) than for seizure-free patients. Furthermore, our method provided better results than using only brain network or single-channel signal features. This suggests that combining these complementary features can facilitate more accurate localization of the EZ.
Collapse
Affiliation(s)
- Nan An
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaolai Ye
- Department of Functional Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiangqiang Liu
- Department of Functional Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jiwen Xu
- Department of Functional Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Amorim-Leite R, Remick M, Welch W, Abel TJ. History of the Network Approach in Epilepsy Surgery. Neurosurg Clin N Am 2020; 31:301-308. [PMID: 32475480 DOI: 10.1016/j.nec.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We provide a history and overview of the network approach to epilepsy surgery. Models of the epileptogenic zone (EZ) have evolved considerably over the years with more recent models accounting for the connectivity and network properties of epileptic foci. Next, we describe several examples of network phenotypes of focal epilepsy and how these have the potential to influence surgical decision-making and patient outcome. Future research will provide new insight into how network models of the EZ can determine optimal surgical interventions that improve seizure outcomes and optimize cognitive outcomes.
Collapse
Affiliation(s)
- Ricardo Amorim-Leite
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Madison Remick
- Department of Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - William Welch
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|