1
|
Khalili BF, Walbert T, Horbinski C, Dixit K, Gururangan K, Thio H, Tate MC, Stupp R, Lukas RV, Templer JW. Levetiracetam and valproic acid in glioma: antiseizure and potential antineoplastic effects. Future Oncol 2025:1-9. [PMID: 39786974 DOI: 10.1080/14796694.2025.2450215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Seizures are a frequent complication in glioma. Incidence of brain tumor-related epilepsy (BTRE) in high-grade glioma (HGG) is an estimated > 25% and in low-grade glioma (LGG) is approximately 72%. Two first-line antiseizure medications (ASMs) for BTRE include levetiracetam (LEV) and valproic acid (VPA). Use of VPA has decreased because of a broader side effect profile, potential interaction with chemotherapeutic drugs, and availability of newer generation agents. In refractory BTRE, LEV and VPA may be prescribed together to enhance seizure control. VPA and LEV have gained attention for their purported antineoplastic effects and synergistic role with temozolomide. VPA is suggested to modulate anticancer activity in vitro through multiple mechanisms. In addition, retrospective studies indicate increased overall survival in patients with epileptogenic HGGs who are managed with LEV or VPA rather than other ASMs. However, these studies have numerous limitations. It is also reported that patients with glioma and a seizure history have a longer survival. This extended survival, if one exists, may be only observed in certain gliomas with corresponding patient characteristics. We provide a brief overview of the management of BTRE, VPA and LEV as anticonvulsants and antineoplastics, and the factors that may be associated with survival in epileptogenic glioma.
Collapse
Affiliation(s)
| | - Tobias Walbert
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| | - Karan Dixit
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kapil Gururangan
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Helen Thio
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Matthew C Tate
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Section of Hematology & Oncology, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Jessica W Templer
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Li T, Li Q, Fan X, Wang L, You G. Seizure Burden and Clinical Risk Factors in Glioma-Related Epilepsy: Insights From MRI Voxel-Based Lesion-Symptom Mapping. J Magn Reson Imaging 2024. [PMID: 39545320 DOI: 10.1002/jmri.29663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Epilepsy is the most common preoperative symptom in patients with supratentorial gliomas. Identifying tumor locations and clinical factors associated with preoperative epilepsy is important for understanding seizure risk. PURPOSE To investigate the key brain areas and risk factors associated with preoperative seizures in glioma patients. STUDY TYPE Retrospective. POPULATION A total of 735 patients with primary diffuse supratentorial gliomas (372 low grade; 363 high grade) with preoperative MRI and pathology data. FIELD STRENGTH/SEQUENCE Axial T2-weighted fast spin-echo sequence at 3.0 T. ASSESSMENT Seizure burden was defined as the number of preoperative seizures within 6 months. Tumor and high-signal edema areas on T2 images were considered involved regions. A voxel-based lesion-symptom mapping analysis was used to identify voxels associated with seizure burden. The involvement of peak voxels (those most associated with seizure burden) and clinical factors were assessed as risk factors for preoperative seizure. STATISTICAL TESTS Univariable and multivariable binary and ordinal logistic regression analyses and chi-square tests were performed, with results reported as odds ratios (ORs) and 95% confidence intervals. A P-value <0.05 was considered significant. RESULTS A total of 448 patients experienced preoperative seizures. Significant seizure burden-related voxels were located in the right hippocampus and left insular cortex (based on 1000 permutation tests), with significant differences observed in both low- and high-grade tumors. Tumor involvement in the peak voxel region was an independent risk factor for an increased burden of preoperative seizures (OR = 6.98). Additionally, multivariable binary logistic regression results indicated that 1p/19q codeletion (OR = 1.51), intermediate tumor volume (24.299-97.066 cm3), and involvement of the peak voxel (OR = 6.06) were independent risk factors for preoperative glioma-related epilepsy. CONCLUSION Voxel areas identified through voxel-based lesion-symptom mapping analysis, along with clinical factors, show associations with clinical seizure burden, offering insights for assessing seizure burden for glioma patients. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Tianshi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiuling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ehara T, Ohka F, Motomura K, Saito R. Epilepsy in Patients with Gliomas. Neurol Med Chir (Tokyo) 2024; 64:253-260. [PMID: 38839295 PMCID: PMC11304448 DOI: 10.2176/jns-nmc.2023-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/02/2024] [Indexed: 06/07/2024] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a complication that significantly impairs the quality of life and course of treatment of patients with brain tumors. Several recent studies have shed further light on the mechanisms and pathways by which genes and biological molecules in the tumor microenvironment can cause epilepsy. Moreover, epileptic seizures have been found to promote the growth of brain tumors, making the control of epilepsy a critical factor in treating brain tumors. In this study, we summarize the previous research and recent findings concerning BTRE. Expectedly, a deeper understanding of the underlying genetic and molecular mechanisms leads to safer and more effective treatments for suppressing epileptic symptoms and tumor growth.
Collapse
Affiliation(s)
- Takuro Ehara
- Department of Neuro-Oncology/Neurosurgery, International Medical Center, Saitama Medical University
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| |
Collapse
|
4
|
Bruno F, Pellerino A, Conti Nibali M, Pronello E, Cofano F, Rossi M, Levis M, Bertero L, Soffietti R, Cassoni P, Garbossa D, Bello L, Rudà R. Association of Clinical, Tumor, and Treatment Characteristics With Seizure Control in Patients With IDH1/2-Mutant Lower-Grade Glioma. Neurology 2024; 102:e209352. [PMID: 38684041 DOI: 10.1212/wnl.0000000000209352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with IDH1/2-mutant lower-grade glioma have a high frequency of seizures. We aimed to investigate the correlations between seizures and tumor/patient characteristics and the impact of surgery and adjuvant treatments (AT) on seizure control along the disease trajectory. METHODS We retrospectively included patients with IDH1/2-mutant lower-grade glioma who underwent surgery at the neurosurgery divisions of the University of Turin and Milan and were treated at the Division of Neuro-Oncology of Turin. Inclusion criteria were a diagnosis according to the 2021 WHO Classification and presentation with seizures; exclusion criteria were presence of CDKN2A/B homozygous deletion, intense/ring contrast enhancement on MRI at presentation, and small tissue biopsy. We evaluated seizure freedom for 2 months after surgery, 6 months from starting observation or AT, at recurrence, and for 6 months after treatments of recurrence. RESULTS We included 150 patients. There were 77 (51%) and 31 (21%) patients with IDH-mutant/1p19q-codeleted grade 2 and 3 oligodendroglioma and 30 (20%) and 12 (8%) with IDH-mutant grade 2 and 3 astrocytoma, respectively. Total resection was accomplished in 68 (45%). Seventy-five patients (50%) received AT while the remaining 75 were observed with MRI. After 6 months after AT, 28 of 29 patients (96.5%) displayed seizure reduction, 5 of 28 (18%) being seizure-free. 66 of 124 patients (53%) had seizures at recurrence. After 6 months after second-line treatments, 60 of 66 patients (91%) had seizure reduction, 11 (17%) being seizure-free. In multivariable analyses, grade 3 histology positively correlated with seizure freedom at 2 months after surgery (OR 3.5, 1.4-8.9, p = 0.008), 6 months after AT (OR 9.0, 1.5-54.9, p = 0.017), and 6 months after treatment of recurrence (OR 4.9, 1.5-16.5, p = 0.009). Adjuvant radiotherapy reduced seizures at recurrence in a univariate analysis (OR 0.14, 0.03-0.7, p = 0.020). Patients with seizure freedom after surgery and AT displayed longer progression-free survival (PFS) (65, 24.5-105, vs 48 months, 32-63.5, p = 0.037). DISCUSSION This study analyzed seizure control in patients with IDH1/2-mutant lower-grade glioma across multiple time points. Grade 3 correlated with better seizure control throughout the entire disease trajectory, and seizure freedom after surgery and AT correlated with a longer PFS regardless of tumor grade. These results could serve as an external control arm in clinical trials evaluating the efficacy on seizures of antitumor agents in patients with IDH-mutant lower-grade glioma.
Collapse
Affiliation(s)
- Francesco Bruno
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Alessia Pellerino
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Marco Conti Nibali
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Edoardo Pronello
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Fabio Cofano
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Marco Rossi
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Mario Levis
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Luca Bertero
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Riccardo Soffietti
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Paola Cassoni
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Diego Garbossa
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Lorenzo Bello
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Roberta Rudà
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| |
Collapse
|
5
|
Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, Lai Z, Chen R, Chen B, Wang Z, Zhang W, Chu L. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther 2024; 30:e14717. [PMID: 38641945 PMCID: PMC11031674 DOI: 10.1111/cns.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.
Collapse
Affiliation(s)
- Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Rusong Li
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Danqing Fu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Biqin Zhang
- Cancer Center, Department of HematologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Ailin Cui
- Cancer Center, Department of Ultrasound MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Yutian Shao
- Zhejiang BioAsia Life Science InstitutePinghuChina
| | - Zeyu Lai
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Rongrong Chen
- School of Clinical MedicineHangzhou Normal UniversityHangzhouChina
| | - Bingyu Chen
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Wei Zhang
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Lisheng Chu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
6
|
Kivioja T, Posti JP, Sipilä J, Rauhala M, Frantzén J, Gardberg M, Rahi M, Rautajoki K, Nykter M, Vuorinen V, Nordfors K, Haapasalo H, Haapasalo J. Motor dysfunction as a primary symptom predicts poor outcome: multicenter study of glioma symptoms. Front Oncol 2024; 13:1305725. [PMID: 38239655 PMCID: PMC10794640 DOI: 10.3389/fonc.2023.1305725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Background and objectives The objectives of this study were to investigate the prognostic value of primary symptoms and leading symptoms in adult patients with diffuse infiltrating glioma and to provide a clinical perspective for evaluating survival. Methods This study included a retrospective cohort from two tertiary university hospitals (n = 604, 2006-2013, Tampere University Hospital and Turku University Hospital) and a prospective cohort (n = 156, 2014-2018, Tampere University Hospital). Preoperative symptoms were divided into primary and leading symptoms. Results were validated with the newer WHO 2021 classification criteria. Results The most common primary symptoms were epileptic seizure (30.8% retrospective, 28.2% prospective), cognitive disorder (13.2% retrospective, 16.0% prospective), headache (8.6% retrospective, 12.8% prospective), and motor paresis (7.0% retrospective, 7.1% prospective). Symptoms that predicted better survival were epileptic seizure and visual or other sense-affecting symptom in the retrospective cohort and epileptic seizure and headache in the prospective cohort. Predictors of poor survival were cognitive disorder, motor dysfunction, sensory symptom, tumor hemorrhage, speech disorder and dizziness in the retrospective cohort and cognitive disorder, motor dysfunction, sensory symptom, and dizziness in the prospective cohort. Motor dysfunction served as an independent predictor of survival in a multivariate model (OR = 1.636). Conclusion Primary and leading symptoms in diffuse gliomas are associated with prognoses in retrospective and prospective settings. Motor paresis was an independent prognostic factor for poor survival in multivariate analysis for grade 2-4 diffuse gliomas, especially in glioblastomas.
Collapse
Affiliation(s)
- Tomi Kivioja
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Jussi Sipilä
- Department of Neurology, Siun Sote, North Karelia Central Hospital, Joensuu, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Minna Rauhala
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Janek Frantzén
- Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Maria Gardberg
- Turku University Hospital, Tyks Laboratories, Pathology and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Melissa Rahi
- Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Kirsi Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Ville Vuorinen
- Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Hannu Haapasalo
- Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd., Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Saviuk M, Sleptsova E, Redkin T, Turubanova V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers (Basel) 2023; 15:5539. [PMID: 38067243 PMCID: PMC10705208 DOI: 10.3390/cancers15235539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Approximately 30% of glioma patients are able to survive beyond one year postdiagnosis. And this short time is often overshadowed by glioma-associated epilepsy. This condition severely impairs the patient's quality of life and causes great suffering. The genetic, molecular and cellular mechanisms underlying tumour development and epileptogenesis remain incompletely understood, leading to numerous unanswered questions. The various types of gliomas, namely glioblastoma, astrocytoma and oligodendroglioma, demonstrate distinct seizure susceptibility and disease progression patterns. Patterns have been identified in the presence of IDH mutations and epilepsy, with tumour location in cortical regions, particularly the frontal lobe, showing a more frequent association with seizures. Altered expression of TP53, MGMT and VIM is frequently detected in tumour cells from individuals with epilepsy associated with glioma. However, understanding the pathogenesis of these modifications poses a challenge. Moreover, hypoxic effects induced by glioma and associated with the HIF-1a factor may have a significant impact on epileptogenesis, potentially resulting in epileptiform activity within neuronal networks. We additionally hypothesise about how the tumour may affect the functioning of neuronal ion channels and contribute to disruptions in the blood-brain barrier resulting in spontaneous depolarisations.
Collapse
Affiliation(s)
- Mariia Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ekaterina Sleptsova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Tikhon Redkin
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Victoria Turubanova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| |
Collapse
|
8
|
van Opijnen MP, Tesileanu CMS, Dirven L, van der Meer PB, Wijnenga MMJ, Vincent AJPE, Broekman MLD, Dubbink HJ, Kros JM, van Duinen SG, Smits M, French PJ, van den Bent MJ, Taphoorn MJB, Koekkoek JAF. IDH1/2 wildtype gliomas grade 2 and 3 with molecular glioblastoma-like profile have a distinct course of epilepsy compared to IDH1/2 wildtype glioblastomas. Neuro Oncol 2023; 25:701-709. [PMID: 35972438 PMCID: PMC10076940 DOI: 10.1093/neuonc/noac197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND IDH1/2 wildtype (IDHwt) glioma WHO grade 2 and 3 patients with pTERT mutation and/or EGFR amplification and/or + 7/-10 chromosome gain/loss have a similar overall survival time as IDHwt glioblastoma patients, and are both considered glioblastoma IDHwt according to the WHO 2021 classification. However, differences in seizure onset have been observed. This study aimed to compare the course of epilepsy in the 2 glioblastoma subtypes. METHODS We analyzed epilepsy data of an existing cohort including IDHwt histologically lower-grade glioma WHO grade 2 and 3 with molecular glioblastoma-like profile (IDHwt hLGG) and IDHwt glioblastoma patients. Primary outcome was the incidence proportion of epilepsy during the disease course. Secondary outcomes included, among others, onset of epilepsy, number of seizure days, and antiepileptic drug (AED) polytherapy. RESULTS Out of 254 patients, 78% (50/64) IDHwt hLGG and 68% (129/190) IDHwt glioblastoma patients developed epilepsy during the disease (P = .121). Epilepsy onset before histopathological diagnosis occurred more frequently in IDHwt hLGG compared to IDHwt glioblastoma patients (90% vs 60%, P < .001), with a significantly longer median time to diagnosis (3.5 vs 1.3 months, P < .001). Median total seizure days was also longer for IDHwt hLGG patients (7.0 vs 3.0, P = .005), and they received more often AED polytherapy (32% vs 17%, P = .028). CONCLUSIONS Although the incidence proportion of epilepsy during the entire disease course is similar, IDHwt hLGG patients show a significantly higher incidence of epilepsy before diagnosis and a significantly longer median time between first seizure and diagnosis compared to IDHwt glioblastoma patients, indicating a distinct clinical course.
Collapse
Affiliation(s)
- Mark P van Opijnen
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - C Mircea S Tesileanu
- Department of Neurology, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Linda Dirven
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Pim B van der Meer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten M J Wijnenga
- Department of Neurology, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Arnaud J P E Vincent
- Department of Neurosurgery, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, the Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johan M Kros
- Department of Pathology, the Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pim J French
- Department of Neurology, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Martin J van den Bent
- Department of Neurology, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| |
Collapse
|
9
|
Seidel S, Wehner T, Miller D, Wellmer J, Schlegel U, Grönheit W. Brain tumor related epilepsy: pathophysiological approaches and rational management of antiseizure medication. Neurol Res Pract 2022; 4:45. [PMID: 36059029 PMCID: PMC9442934 DOI: 10.1186/s42466-022-00205-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Brain tumor related epilepsy (BTRE) is a common complication of cerebral tumors and its incidence is highly dependent on the type of tumor, ranging from 10–15% in brain metastases to > 80% in low grade gliomas. Clinical management is challenging and has to take into account aspects beyond the treatment of non-tumoral epilepsy. Main body Increasing knowledge about the pathophysiology of BTRE, particularly on glutamatergic mechanisms of oncogenesis and epileptogenesis, might influence management of anti-tumor and BTRE treatment in the future. The first seizure implies the diagnosis of epilepsy in patients with brain tumors. Due to the lack of prospective randomized trials in BTRE, general recommendations for focal epilepsies currently apply concerning the initiation of antiseizure medication (ASM). Non-enzyme inducing ASM is preferable. Prospective trials are needed to evaluate, if AMPA inhibitors like perampanel possess anti-tumor effects. ASM withdrawal has to be weighed very carefully against the risk of seizure recurrence, but can be achievable in selected patients. Permission to drive is possible for some patients with BTRE under well-defined conditions, but requires thorough neurological, radiological, ophthalmological and neuropsychological examination.
Conclusion An evolving knowledge on pathophysiology of BTRE might influence future therapy. Randomized trials on ASM in BTRE with reliable endpoints are needed. Management of withdrawal of ASMs and permission to drive demands thorough diagnostic as well as neurooncological and epileptological expertise.
Collapse
|
10
|
Rudà R, Bruno F, Ius T, Silvani A, Minniti G, Pace A, Lombardi G, Bertero L, Pizzolitto S, Pollo B, Conti Nibali M, Pellerino A, Migliore E, Skrap M, Bello L, Soffietti R. IDH wild-type grade 2 diffuse astrocytomas: prognostic factors and impact of treatments within molecular subgroups. Neuro Oncol 2021; 24:809-820. [PMID: 34651653 DOI: 10.1093/neuonc/noab239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prognostic factors and role of treatments are not well known in isocitrate dehydrogenase (IDH) wild-type (wt) grade 2 astrocytomas. The aim of this study was to define in these tumours clinical features, molecular characteristics and prognostic factors, with particular focus on molecular subgroups defined by cIMPACT-NOW update 3. METHODS We analysed 120 patients with confirmed diagnosis of grade 2 IDHwt astrocytoma according to WHO 2016, collected from 7 Italian centres between 1999 and 2017. RESULTS Median PFS and OS of the whole cohort were 18.9 and 32.6 months. Patients older than 40 years and patients with modest contrast enhancement on MRI had a shorter PFS and OS. Gross total resection yielded superior PFS and OS over non-gross total resection. PFS and OS of patients with either pTERT mutation or EGRF amplification were significantly shorter. The prognostic value of age, contrast enhancement on MRI and extent of surgery was different within the molecular subgroups. Gross total resection was associated with increased PFS (not reached versus 14 months, p = 0.023) and OS (117.9 versus 20 months, p = 0.023) in patients without EGFR amplification, and with increased OS in those without pTERT mutation (NR vs 53.7 months, p = 0.05). Conversely, for patients with EGFR amplification or pTERT mutation, gross total resection did not yield a significant survival benefit. CONCLUSION Patients without EGFR amplification and pTERT mutation could be observed after gross total resection.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy.,Department of Neurology, Castelfranco Veneto and Brain Tumor Board Treviso Hospital, Italy
| | - Francesco Bruno
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Antonio Silvani
- Department of Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University Hospital, Siena, Italy
| | - Andrea Pace
- Neuro-Oncology Unit, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Italy
| | - Stefano Pizzolitto
- Department of Pathology, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Division, Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Enrica Migliore
- Unit of Cancer Epidemiology (CPO Piemonte), University of Turin, Turin, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Division, Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
11
|
Targeted Therapies in Rare Brain Tumours. Int J Mol Sci 2021; 22:ijms22157949. [PMID: 34360713 PMCID: PMC8348084 DOI: 10.3390/ijms22157949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Rare central nervous system (CNS) tumours represent a unique challenge. Given the difficulty of conducting dedicated clinical trials, there is a lack of therapies for these tumours supported by high quality evidence, and knowledge regarding the impact of standard treatments (i.e., surgery, radiotherapy or chemotherapy) is commonly based on retrospective studies. Recently, new molecular techniques have led to the discovery of actionable molecular alterations. The aim of this article is to review recent progress in the molecular understanding of and therapeutic options for rare brain tumours, both in children and adults. We will discuss options such as targeting the mechanistic target of rapamycin (mTOR) pathway in subependymal giant cells astrocytomas (SEGAs) of tuberous sclerosis and BRAF V600E mutation in rare glial (pleomorphic xanthoastrocytomas) or glioneuronal (gangliogliomas) tumours, which are a model of how specific molecular treatments can also favourably impact neurological symptoms (such as seizures) and quality of life. Moreover, we will discuss initial experiences in targeting new molecular alterations in gliomas, such as isocitrate dehydrogenase (IDH) mutations and neurotrophic tyrosine receptor kinase (NTRK) fusions, and in medulloblastomas such as the sonic hedgehog (SHH) pathway.
Collapse
|
12
|
Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G. Seizures, Edema, Thrombosis, and Hemorrhages: An Update Review on the Medical Management of Gliomas. Front Oncol 2021; 11:617966. [PMID: 33828976 PMCID: PMC8019972 DOI: 10.3389/fonc.2021.617966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Patients affected with gliomas develop a complex set of clinical manifestations that deeply impact on quality of life and overall survival. Brain tumor-related epilepsy is frequently the first manifestation of gliomas or may occur during the course of disease; the underlying mechanisms have not been fully explained and depend on both patient and tumor factors. Novel treatment options derive from the growing use of third-generation antiepileptic drugs. Vasogenic edema and elevated intracranial pressure cause a considerable burden of symptoms, especially in high-grade glioma, requiring an adequate use of corticosteroids. Patients with gliomas present with an elevated risk of tumor-associated venous thromboembolism whose prophylaxis and treatment are challenging, considering also the availability of new oral anticoagulant drugs. Moreover, intracerebral hemorrhages can complicate the course of the illness both due to tumor-specific characteristics, patient comorbidities, and side effects of antithrombotic and antitumoral therapies. This paper aims to review recent advances in these clinical issues, discussing the medical management of gliomas through an updated literature review.
Collapse
Affiliation(s)
- Marco Zoccarato
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | - Lucia Nardetto
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | | | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| |
Collapse
|