1
|
Song Z, Jiang Z, Zhang Z, Wang Y, Chen Y, Tang X, Li H. Evolving brain network dynamics in early childhood: Insights from modular graph metrics. Neuroimage 2024; 297:120740. [PMID: 39047590 DOI: 10.1016/j.neuroimage.2024.120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Modular dynamic graph theory metrics effectively capture the patterns of dynamic information interaction during human brain development. While existing research has employed modular algorithms to examine the overall impact of dynamic changes in community structure throughout development, there is a notable gap in understanding the cross-community dynamic changes within different functional networks during early childhood and their potential contributions to the efficiency of brain information transmission. This study seeks to address this gap by tracing the trajectories of cross-community structural changes within early childhood functional networks and modeling their contributions to information transmission efficiency. We analyzed 194 functional imaging scans from 83 children aged 2 to 8 years, who participated in passive viewing functional magnetic resonance imaging sessions. Utilizing sliding windows and modular algorithms, we evaluated three spatiotemporal metrics-temporal flexibility, spatiotemporal diversity, and within-community spatiotemporal diversity-and four centrality metrics: within-community degree centrality, eigenvector centrality, between-community degree centrality, and between-community eigenvector centrality. Mixed-effects linear models revealed significant age-related increases in the temporal flexibility of the default mode network (DMN), executive control network (ECN), and salience network (SN), indicating frequent adjustments in community structure within these networks during early childhood. Additionally, the spatiotemporal diversity of the SN also displayed significant age-related increases, highlighting its broad pattern of cross-community dynamic interactions. Conversely, within-community spatiotemporal diversity in the language network exhibited significant age-related decreases, reflecting the network's gradual functional specialization. Furthermore, our findings indicated significant age-related increases in between-community degree centrality across the DMN, ECN, SN, language network, and dorsal attention network, while between-community eigenvector centrality also increased significantly for the DMN, ECN, and SN. However, within-community eigenvector centrality remained stable across all functional networks during early childhood. These results suggest that while centrality of cross-community interactions in early childhood functional networks increases, centrality within communities remains stable. Finally, mediation analysis was conducted to explore the relationships between age, brain dynamic graph metrics, and both global and local efficiency based on community structure. The results indicated that the dynamic graph metrics of the SN primarily mediated the relationship between age and the decrease in global efficiency, while those of the DMN, language network, ECN, dorsal attention network, and SN primarily mediated the relationship between age and the increase in local efficiency. This pattern suggests a developmental trajectory in early childhood from global information integration to local information segregation, with the SN playing a pivotal role in this transformation. This study provides novel insights into the mechanisms by which early childhood brain functional development impacts information transmission efficiency through cross-community adjustments in functional networks.
Collapse
Affiliation(s)
- Zeyu Song
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Zhao Zhang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yifei Wang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Chen
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Hanjun Li
- School of Medical Technology, Beijing Institute of Technology Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
2
|
Liao D, Liang LS, Wang D, Li XH, Liu YC, Guo ZP, Zhang ZQ, Liu XF. Altered static and dynamic functional network connectivity in individuals with subthreshold depression: a large-scale resting-state fMRI study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01871-3. [PMID: 39044022 DOI: 10.1007/s00406-024-01871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Dynamic functional network connectivity (dFNC) is an expansion of static FNC (sFNC) that reflects connectivity variations among brain networks. This study aimed to investigate changes in sFNC and dFNC strength and temporal properties in individuals with subthreshold depression (StD). Forty-two individuals with subthreshold depression and 38 healthy controls (HCs) were included in this study. Group independent component analysis (GICA) was used to determine target resting-state networks, namely, executive control network (ECN), default mode network (DMN), sensorimotor network (SMN) and dorsal attentional network (DAN). Sliding window and k-means clustering analyses were used to identify dFNC patterns and temporal properties in each subject. We compared sFNC and dFNC differences between the StD and HCs groups. Relationships between changes in FNC strength, temporal properties, and neurophysiological score were evaluated by Spearman's correlation analysis. The sFNC analysis revealed decreased FNC strength in StD individuals, including the DMN-CEN, DMN-SMN, SMN-CEN, and SMN-DAN. In the dFNC analysis, 4 reoccurring FNC patterns were identified. Compared to HCs, individuals with StD had increased mean dwell time and fraction time in a weakly connected state (state 4), which is associated with self-focused thinking status. In addition, the StD group demonstrated decreased dFNC strength between the DMN-DAN in state 2. sFNC strength (DMN-ECN) and temporal properties were correlated with HAMD-17 score in StD individuals (all p < 0.01). Our study provides new evidence on aberrant time-varying brain activity and large-scale network interaction disruptions in StD individuals, which may provide novel insight to better understand the underlying neuropathological mechanisms.
Collapse
Affiliation(s)
- Dan Liao
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Li-Song Liang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Di Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xiao-Hai Li
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Yuan-Cheng Liu
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xin-Feng Liu
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
3
|
Li Y, Ran Y, Yao M, Chen Q. Altered static and dynamic functional connectivity of the default mode network across epilepsy subtypes in children: A resting-state fMRI study. Neurobiol Dis 2024; 192:106425. [PMID: 38296113 DOI: 10.1016/j.nbd.2024.106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Epilepsy is a chronic neurologic disorder characterized by abnormal functioning of brain networks, making it a complex research topic. Recent advancements in neuroimaging technology offer an effective approach to unraveling the intricacies of the human brain. Within different types of epilepsy, there is growing recognition regarding ongoing changes in the default mode network (DMN). However, little is known about the shared and distinct alterations of static functional connectivity (sFC) and dynamic functional connectivity (dFC) in DMN among epileptic subtypes, especially in children with epilepsy. METHODS Here, 110 children with epilepsy at a single center, including idiopathic generalized epilepsy (IGE), frontal lobe epilepsy (FLE), temporal lobe epilepsy (TLE), and parietal lobe epilepsy (PLE), as well as 84 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (fMRI) scan. We investigated both sFC and dFC between groups of the DMN. RESULTS Decreased static and dynamic connectivity within the DMN subsystem were shared by all subtypes. In each epilepsy subtype, children with epilepsy displayed significant and distinct patterns of DMN connectivity compared to the control group: the IGE group showed reduced interhemispheric connectivity, the FLE group consistently demonstrated disturbances in frontal region connectivity, the TLE group exhibited significant disruptions in hippocampal connectivity, and the PLE group displayed a notable decrease in parietal-temporal connectivity within the DMN. Some state-specific FC disruptions (decreased dFC) were observed in each epilepsy subtype that cannot detect by sFC. To determine their uniqueness within specific subtypes, bootstrapping methods were employed and found the significant results (IGE: between PCC and bilateral precuneus, FLE: between right middle frontal gyrus and bilateral middle temporal gyrus, TLE: between left Hippocampus and right fusiform, PLE: between left angular and cingulate cortex). Furthermore, only children with IGE exhibited dynamic features associated with clinical variables. CONCLUSIONS Our findings highlight both shared and distinct FC alterations within the DMN in children with different types of epilepsy. Furthermore, our work provides a novel perspective on the functional alterations in the DMN of pediatric patients, suggesting that combined sFC and dFC analysis can provide valuable insights for deepening our understanding of the neuronal mechanism underlying epilepsy in children.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Yun Ran
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Maohua Yao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
4
|
Li Y, Ran Y, Chen Q. Abnormal static and dynamic functional network connectivity of the whole-brain in children with generalized tonic-clonic seizures. Front Neurosci 2023; 17:1236696. [PMID: 37670842 PMCID: PMC10475552 DOI: 10.3389/fnins.2023.1236696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Generalized tonic-clonic seizures (GTCS) are a subtype of generalized seizures exhibiting bursts of bilaterally synchronous generalized spike-wave discharges. Numerous neuroimaging studies have reported aberrant functional activity and topological organization of brain network in epilepsy patients with GTCS, but most studies have focused on adults. However, the effect of GTCS on the spatial and temporal properties of brain function in children remains unclear. The present study aimed to explore whole-brain static (sFC) and dynamic functional connectivity (dFC) in children with GTCS. Methods Twenty-three children with GTCS and 32 matched healthy controls (HCs) were recruited for the present study. Resting-state functional magnetic resonance imaging (MRI) data were collected for each subject. The group independent component analysis method was used to obtain independent components (ICs). Then, sFC and dFC methods were applied and the differences in functional connectivity (FC) were compared between the children with GTCS and the HCs. Additionally, we investigated the correlations between the dFC indicators and epilepsy duration. Results Compared to HCs, GTCS patients exhibited a significant decrease in sFC strengths among most networks. The K-means clustering method was implemented for dFC analysis, and the optimal number of clusters was estimated: two discrete connectivity configurations, State 1 (strong connection) and State 2 (weak connection). The decreased dFC mainly occurred in State 1, especially the dFC between the visual network (VIS) and somatomotor network (SMN); but the increased dFC mainly occurred in State 2 among most networks in GTCS children. In addition, GTCS children showed significantly shorter mean dwell time and lower fractional windows in stronger connected State 1, while GTCS children showed significantly longer mean dwell time in weaker connected State 2. In addition, the dFC properties, including mean dwell time and fractional windows, were significantly correlated with epilepsy duration. Conclusion Our results indicated that GTCS epilepsy not only alters the connectivity strength but also changes the temporal properties of connectivity in networks in the whole brain. These findings also emphasized the differences in sFC and dFC in children with GTCS. Combining sFC and dFC methods may provide more comprehensive understanding of the abnormal changes in brain architecture in children with GTCS.
Collapse
Affiliation(s)
- Yongxin Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yun Ran
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
5
|
Li Y, Wang J, Wang X, Chen Q, Qin B, Chen J. Reconfiguration of static and dynamic thalamo-cortical network functional connectivity of epileptic children with generalized tonic-clonic seizures. Front Neurosci 2022; 16:953356. [PMID: 35937891 PMCID: PMC9353948 DOI: 10.3389/fnins.2022.953356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/24/2022] [Indexed: 12/05/2022] Open
Abstract
Objective A number of studies in adults and children with generalized tonic-clonic seizure (GTCS) have reported the alterations in morphometry, functional activity, and functional connectivity (FC) in the thalamus. However, the neural mechanisms underlying the alterations in the thalamus of patients with GTCS are not well understood, particularly in children. The aim of the current study was to explore the temporal properties of functional pathways connecting thalamus in children with GTCS. Methods Here, we recruited 24 children with GTCS and 36 age-matched healthy controls. Static and dynamic FC approaches were used to evaluate alterations in the temporal variability of thalamo-cortical networks in children with GTCS. The dynamic effective connectivity (dEC) method was also used to evaluate the directions of the fluctuations in effective connectivity. In addition, the relationships between the dynamic properties and clinical features were assessed. Results The static FC analysis presented significantly decreased connectivity patterns between the bilateral thalamus and between the thalamus and right inferior temporal gyrus. The dynamic connectivity analysis found decreased FC variability in the thalamo-cortical network of children with epilepsy. Dynamic EC analyses identified increased connectivity variability from the frontal gyrus to the bilateral thalamus, and decreased connectivity variability from the right thalamus to the left thalamus and from the right thalamus to the right superior parietal lobe. In addition, correlation analysis revealed that both static FC and connectivity temporal variability in the thalamo-cortical network related to the clinical features (epilepsy duration and epilepsy onset time). Significance Our findings of both increased and decreased connectivity variability in the thalamo-cortical network imply a dynamic restructuring of the functional pathways connecting the thalamus in children with GTCS. These alterations in static and temporal dynamic pathways connecting the bilateral thalamus may extend our understanding of the neural mechanisms underlying the GTCS in children.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Yongxin Li,
| | - Jianping Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Wang
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Bing Qin
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|