1
|
Guo Y, Peng B, Liao J, Cao W, Liu Y, Nie X, Li Z, Ouyang R. Recent advances in the role of dissolved organic matter during antibiotics photodegradation in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170101. [PMID: 38242474 DOI: 10.1016/j.scitotenv.2024.170101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The presence of residual antibiotics in the environment is a prominent issue. Photodegradation behavior is an important way of antibiotics reduction, which is closely related to dissolved organic matter (DOM) in water. The review provides an overview of the latest advancements in the field. Classification, characterization of DOM, and the dominant mechanisms for antibiotic photodegradation were discussed. Furthermore, it summarized and compared the effects of DOM on different antibiotics photodegradation. Moreover, the review comprehensively considered the factors influencing the photodegradation of antibiotics in the aquatic environment, including the characteristics of light, temperature, dosage of DOM, concentration of antibiotics, solution pH, and the presence of coexisting ions. Finally, potential directions were proposed for the development of predictive models for the photodegradation of antibiotics. Based on the review of existing literature, this paper also considered several pathways for the future study of antibiotic photodegradation. This study allows for a better understanding of the DOM's environmental role and provides important new insights into the photochemical fate of antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Yinghui Guo
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Bo Peng
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China.
| | - Jinggan Liao
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Weicheng Cao
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Yaojun Liu
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Xiaodong Nie
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Zhongwu Li
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| | - Rui Ouyang
- Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, School of Geographic Sciences, Hunan Normal University, Changsha 410081, PR China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
2
|
Zhang J, Li J, Tang W, Liu X, Yang C, Ma J. Highly efficient reduction of bromate by vacuum UV/sulfite system. CHEMOSPHERE 2024; 349:140875. [PMID: 38065260 DOI: 10.1016/j.chemosphere.2023.140875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Bromate (BrO3-), a worldwide regulated by-product after ozone disinfection, is often detected in bromide-containing water, and has a strict limit of 10 μg L-1 in potable water. BrO3- degradation by advanced reduction processes (ARPs) has gained much attention because of efficient removal and easy integration with ultraviolet disinfection (UV at 254 nm). In the vacuum UV (VUV, 185/254 nm)/sulfite system, the elimination kinetics of BrO3- increased by 9-fold and 15-fold comparing with VUV alone and UV/sulfite system. This study further demonstrated the hydrated electron (eaq-) works as the dominant species in BrO3- degradation in alkaline solution, while in the acidic solution the H• became a secondary reactive species besides eaq-. Hence, the influences of pH, sulfite concentration, dissolved gas and water matrix on effectiveness of degradation kinetics of BrO3- was explored in details. With increasing pH, the proportion of SO32- species increased and even became the major ones, which also correlated well with the kobs (min-1) of BrO3- degradation. The stability of eaq- also climbs with increasing pH, while that of H• drops significantly. Higher sulfite dosage favored a more rapid degradation of BrO3-. The presence of dissolved oxygen inhibited BrO3- removal due to the scavenging effect of O2 toward eaq- and transformed VUV/sulfite-based ARP to an advanced oxidation process (AOP), which was ineffective for BrO3- removal. BrO3- removal was inhibited to varying degrees after anions (e.g., bicarbonate (HCO3-), chloride (Cl-), nitrate (NO3-)) and humic acid (HA) being added.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junjie Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Weijie Tang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Xin Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Chun Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
3
|
Xiao Z, Yang B, Feng X, Liao Z, Shi H, Jiang W, Wang C, Ren N. Density Functional Theory and Machine Learning-Based Quantitative Structure-Activity Relationship Models Enabling Prediction of Contaminant Degradation Performance with Heterogeneous Peroxymonosulfate Treatments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3951-3961. [PMID: 36809928 DOI: 10.1021/acs.est.2c09034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Heterogeneous peroxymonosulfate (PMS) treatment is recognized as an effective advanced oxidation process (AOP) for the treatment of organic contaminants. Quantitative structure-activity relationship (QSAR) models have been applied to predict the oxidation reaction rates of contaminants in homogeneous PMS treatment systems but are seldom applied in heterogeneous treatment systems. Herein, we established QSAR models updated with density functional theory (DFT) and machine learning approaches to predict the degradation performance for a series of contaminants in heterogeneous PMS systems. We imported the characteristics of organic molecules calculated using constrained DFT as input descriptors and predicted the apparent degradation rate constants of contaminants as the output. The genetic algorithm and deep neural networks were used to improve the predictive accuracy. The qualitative and quantitative results from the QSAR model for the degradation of contaminants can be used to select the most appropriate treatment system. A strategy for selection of the optimum catalyst for PMS treatment of specific contaminants was also established according to the QSAR models. This work not only increases our understanding of contaminant degradation in PMS treatment systems but also highlights a novel QSAR model to predict the degradation performance in complicated heterogeneous AOPs.
Collapse
Affiliation(s)
- Zijie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Bowen Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Zhenqin Liao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Hongtao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Weiyu Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Caipeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
4
|
Liu F, Zhao Q, Ding J, Li L, Wang K, Zhou H, Jiang M, Wei J. Sources, characteristics, and in situ degradation of dissolved organic matters: A case study of a drinking water reservoir located in a cold-temperate forest. ENVIRONMENTAL RESEARCH 2023; 217:114857. [PMID: 36427638 DOI: 10.1016/j.envres.2022.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in the biogeochemical cycles of elements and the regulation of forest ecosystem functions. However, studies on the regional and seasonal characteristics of DOM in cold-temperate montane forests are still not comprehensive. In this study, samples of water, soil, and sediment from different sites in the forest drainage basin were collected, and their DOM was characterized by an excitation-emission matrix and parallel factor analysis (EEM-PARAFAC). The results showed that terrestrial-sourced humic-like substances were the dominant DOM in the studied reservoir and inflowing rivers. The quality and quantity of DOM exhibited spatiotemporal variations with the influence of terrain and monsoonal precipitation. The average concentration of dissolved organic carbon (DOC) in the wet season was 11.62 mg/L, which was higher than that in the dry season (8.18 mg/L). Higher humification index (HIX) values were observed in the wet season and upstream water than in the dry season and reservoir water. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was used to further develop a molecular-level understanding of the in situ degradation process of DOM. The results indicated that photodegradation rather than biodegradation may play a dominant role in the in situ degradation of terrestrial-sourced humic-like substances under natural conditions. The biodegradability of DOM was enhanced after the in situ degradation process. Additionally, a significant decrease in the precursors of disinfectant byproducts in DOM was observed after in situ degradation. To our knowledge, this is the first study of the sources, characteristics, and in situ degradation of DOM in a reservoir in a cold-temperate forest. These findings help better understand the quality, quantity, and biogeochemical process of DOM in the studied reservoir and may contribute to the selection of drinking water treatment technologies for water supply.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jian Wei
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Lin H, Cheng Q, Sun W, Yang F, Ding Y, Ma J. Copper exposure effects on antibiotic degradation in swine manure vary between mesophilic and thermophilic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156759. [PMID: 35718182 DOI: 10.1016/j.scitotenv.2022.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic and heavy metal commonly coexist in manure. This study investigated the effect of Cu exposure on antibiotic dissipation in swine manure under two typical temperature (mesophilic and thermophilic) conditions in composting, focusing on biodegradation behaviors. The results showed that Cu promoted the dissipation of norfloxacin and sulfamethazine (SMZ) in solid swine manure under mesophilic conditions at initial concentrations ranging from 407.8 to 1353.0 mg·kg-1 but insignificantly influenced or even inhibited their dissipation under thermophilic conditions. A liquid manure suspension culture experiment was designed to elucidate the response of SMZ biodegradation to Cu. In this manure suspension, biodegradation was the major mechanism for SMZ removal, but SMZ biodegradation was decreased from 23.2 % to 5.5 % when the Cu concentration increased from 0 to 10 mg L-1. Mesophilic and heat-resistant SMZ-degrading bacterial inoculants were subsequently prepared using 21 SMZ-degrading bacteria that were isolated and identified from manure suspension cultures. Inoculating both mesophilic and heat-resistant SMZ-degrading bacterial inoculants enhanced SMZ degradation in sterilized manure suspensions without Cu addition, however only mesophilic SMZ-degrading inoculum improved SMZ degradation after Cu addition. In the presence of Cu, the heat-resistant SMZ-degrading inoculum failed to enhance SMZ removal in manure suspensions. Our findings can help to answer why Cu has varied effects on antibiotic degradation during manure composting.
Collapse
Affiliation(s)
- Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qilu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanchun Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Sun S, Li S, Hao Y, Yang X, Dou X. Construction of g/C3N4-ZnO composites with enhanced visible-light photocatalytic activity for degradation of amoxicillin. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zou W, Cao Z, Wang Y, Jin M, Lin M. Intercropping of
Pennisetum sinese
with
Lolium perenne
improved phytoextraction of heavy metal from soil. Restor Ecol 2022. [DOI: 10.1111/rec.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wentong Zou
- Provincial Key Lab of Coastal Basin Environment Fujian Polytechnic Normal University Fuqing 350300 China
- School of Food and Biological Engineering Fujian Polytechnic Normal University Fuqing 350300 China
| | - Zhi Cao
- Provincial Key Lab of Coastal Basin Environment Fujian Polytechnic Normal University Fuqing 350300 China
- School of Food and Biological Engineering Fujian Polytechnic Normal University Fuqing 350300 China
| | - Yanjun Wang
- Provincial Key Lab of Coastal Basin Environment Fujian Polytechnic Normal University Fuqing 350300 China
- School of Food and Biological Engineering Fujian Polytechnic Normal University Fuqing 350300 China
| | - Meifang Jin
- Provincial Key Lab of Coastal Basin Environment Fujian Polytechnic Normal University Fuqing 350300 China
- School of Food and Biological Engineering Fujian Polytechnic Normal University Fuqing 350300 China
| | - Maozhi Lin
- Provincial Key Lab of Coastal Basin Environment Fujian Polytechnic Normal University Fuqing 350300 China
- School of Materials and Environmental Engineering Fujian Polytechnic Normal University Fuqing 350300 China
| |
Collapse
|
8
|
Li W, Zhang Y, Cheng X, Wang J, Yang B, Guo H. Amino-modified metal–organic frameworks as peroxymonosulfate catalyst for bisphenol AF decontamination: ROS generation, degradation pathways, and toxicity evaluation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Huang F, Chen L, Zhang C, Liu F, Li H. Prioritization of antibiotic contaminants in China based on decennial national screening data and their persistence, bioaccumulation and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150636. [PMID: 34592302 DOI: 10.1016/j.scitotenv.2021.150636] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The potential adverse impacts of antibiotic contamination on environmental quality are generating increasing concern. Given that an alarming amount and variety of antibiotics have been used in China, a list of priority antibiotics is urgently needed to develop regulatory frameworks to control antibiotic use and monitor environmental pollution. This study established a new method of ranking priority antibiotics based on their prevalence (Pv), occurrence (O), persistence, and bioaccumulation, and toxicity (PBT) in the environment. The Pv and O criteria were weighted and quantified using the decennial national screening datasets (>15,000 concentration values for 105 candidate antibiotics in eight environmental compartments), and quantitative structure-activity relationships were used to estimate PBT values. A total of 26 high priority antibiotics were identified using the PvOPBT method, including 8 quinolones, 5 sulfonamides, 5 macrolides, 4 tetracyclines, 3 from other classes, and 1 unclassified antibiotic. For individual antibiotic classes, the β-lactams and aminoglycosides were ranked from no priority to low priority, whereas the macrolides and tetracyclines were ranked from medium to high priority. Although the PvOPBT ranking scores for the aqueous and solid phases demonstrated an apparent difference for some candidate antibiotics, eighteen antibiotics were ranked as high priority in both aqueous phases and solid phases and are suggested as the top priorities worthy of immediate attention. These top priority antibiotics are primarily utilized in animal husbandry within China. Therefore, urgent action is needed to limit the use of these top priority antibiotics in the animal industry.
Collapse
Affiliation(s)
- Fuyang Huang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Linpeng Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chong Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States of America.
| |
Collapse
|
10
|
Yang B, Cheng X, Zhang Y, Li W, Wang J, Guo H. Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 8:100133. [PMID: 36156988 PMCID: PMC9488040 DOI: 10.1016/j.ese.2021.100133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 05/06/2023]
Abstract
The binding performance of dissolved organic matters (DOM) plays a critical role in the migration, diffusion and removal of various residual pollutants in the natural water environment. In the current study, four typical DOMs (including bovine serum proteins BSA (proteins), sodium alginate SAA (polysaccharides), humic acid HA and fulvic acid FA (humus)) are selected to investigate the binding roles in zwitterionic tetracycline (TET) antibiotic under various ionic strength (IS = 0.001-0.1 M) and pH (5.0-9.0). The dialysis equilibration technique was employed to determine the binding concentrations of TET, and the influence of IS and pH on binding performance was evaluated via UV-vis spectroscopy, total organic carbon (TOC), and Excitation-Emission-Matrix spectra (EEM), zeta potentials and molecule size distribution analysis. Our results suggested that carboxyl and phenolic hydroxyl were identified as the main contributors to TET binding based on the fourier transform infrared spectroscopy (FTIR) analysis, and the binding capability of four DOMs followed as HA > FA » BSA > SAA. The biggest binding concentrations of TET by 10 mg C/L HA, FA, BSA and SAA were 0.863 μM, 0.487 μM, 0.084 μM and 0.086 μM, respectively. The higher binding capability of HA and FA is mainly attributed to their richer functional groups, lower zeta potential (HA/FA = -15.92/-13.54 mV) and the bigger molecular size (HA/FA = 24668/27750 nm). IS significantly inhibits the binding interaction by compressing the molecular structure and the surface electric double layer, while pH had a weak effect. By combining the Donnan model and the multiple linear regression analysis, a modified Karickhoff model was established to effectively predict the binding performance of DOM under different IS (0.001-0.1 M) and pH (5.0-9.0) conditions, and the R2 of linear fitting between experiment-measured logKDOC and model-calculated logKOC were 0.94 for HA and 0.91 for FA. This finding provides a theoretical basis for characterizing and predicting the binding performance of various DOMs to residual micropollutants in the natural water environment.
Collapse
Affiliation(s)
- Bo Yang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xin Cheng
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yongli Zhang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wei Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|