1
|
Gayen S, Roy S, Laishram D, Bandyopadhyay SN, Mukherjee S. Flavokawain A Ruthenium-p-Cymene Complex-Induced Apoptosis by the Modulation of PI3K/β-Catenin/HER2/PARP Signalling in Lung Cancer. Clin Exp Pharmacol Physiol 2025; 52:e70030. [PMID: 39971480 DOI: 10.1111/1440-1681.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/12/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
Lung cancer is most terrible cause of cancer-related death throughout the world. This study focused on the synthesis and characterisation of novel flavokawain A ruthenium-p-cymene complex and to investigate the chemotherapeutic activity against lung carcinoma via in silico, in vitro and in vivo approaches. The complex was characterised via several spectroscopic techniques. In vitro study including cell viability, transwell migration, Western blot and flow cytometric analysis have been executed on both A549 and NCI-H460 cells. The toxicological assessment was performed and subsequently anticancer activity of complex was evaluated in benzo[α]pyrene persuaded lung carcinoma in mice. The molecular docking study demonstrated the compound has greater binding ability with β-catenin, Akt, HER2 and PARP. Followed by the complex treatment, the downregulation of β-catenin, PI3K, Akt, HER2 and PARP were investigated by Western blot analysis and cell cycle arrest was determined through flow cytometry. The outcomes of in vivo experimentation represented fruitful restoration of typical lung architecture after complex treatment. Immunohistochemical analysis demonstrated the downstream of β-catenin/m-TOR/Akt and upstream of caspase-3 and p53 expression, thereby initiating apoptosis. The complex exhibited a potent chemotherapeutic activity via the alteration of tumour microenvironment by modulating PI3K/Akt/β-catenin/HER2/PARP transduction in correlates with apoptotic events in lung carcinoma.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Souvik Roy
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Diana Laishram
- Department of Anatomy, Jagannath Gupta Institute of Medical Sciences and Hospital (JIMSH), Kolkata, India
| | | | | |
Collapse
|
2
|
Soni S, Megha K, Shah VB, Shah AC, Bhatt S, Merja M, Khadela A. Unlocking the therapeutic potential of antibody-drug conjugates in targeting molecular biomarkers in non-small cell lung cancer. J Egypt Natl Canc Inst 2025; 37:6. [PMID: 40025313 DOI: 10.1186/s43046-025-00264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2025] [Indexed: 03/04/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and lethal malignancy worldwide, posing significant challenges to patient survival. Recent advancements in the field of oncology have introduced immunotherapy and targeted therapy as primary treatment modalities for NSCLC. However, the emergence of treatment resistance and relapse has impeded their long-term effectiveness. Antibody-drug conjugates (ADCs), a rapidly evolving class of anti-cancer agents, offer a promising solution to this issue by harnessing the specificity of monoclonal antibodies and the cytotoxic potency of drug payloads. ADCs have demonstrated notable potential in targeting both highly expressing and low-expressing malignant cells, with early-phase clinical trials yielding superior survival outcomes in NSCLC patients. This review comprehensively outlines the recent advancements in ADC-based strategies for managing NSCLC, supported by evidence from clinical trials. Additionally, the review delves into the oncogenic mechanisms of various biomarkers and offers insights into strategies for their detection in NSCLC patients. Lastly, a forward-looking perspective is provided to address the challenges associated with the utilization of ADCs in NSCLC therapy.
Collapse
Affiliation(s)
- Shruti Soni
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaivalya Megha
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vraj B Shah
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Aayushi C Shah
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Shelly Bhatt
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Manthan Merja
- Starlit Cancer Centre, Kothiya Hospital campus, Ahmedabad, Gujarat, 382350, India
| | - Avinash Khadela
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
- Present address: L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
3
|
Zhong S, Börgeling Y, Zardo P, Jonigk D, Borlak J. Comprehensive transcriptome, miRNA and kinome profiling identifies new treatment options for personalized lung cancer therapy. Clin Transl Med 2025; 15:e70177. [PMID: 39995112 PMCID: PMC11850761 DOI: 10.1002/ctm2.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Basic research identified oncogenic driver mutations in lung cancer (LC). However, <10% of patients carry driver mutations. Thus, most patients are not recommended for first-line kinase inhibitor (KI)-based therapies. Through enabling technologies and bioinformatics, we gained deep insight into patient-specific signalling networks which permitted novel KI-based treatment options in LC. METHODS We performed molecular pathology, transcriptomics and miRNA profiling across 95 well-characterized LC patients. We confirmed results based on cross-linked immunoprecipitation-sequencing data, and used N = 524 adeno- and 497 squamous cell carcinomas as validation sets. We employed the PamGene platform to identify aberrant kinases, validated the results by evaluating independent siRNA and CRISPR-mediated mRNA knockdown studies in human LC cell lines. RESULTS Transcriptomics revealed 439, 1240, 383 and 320 significantly upregulated genes, respectively, for adeno-, squamous, neuroendocrine and metastatic cases, and there are 1092, 1477, 609 and 1267 downregulated DEGs. Based on gene enrichment analysis and experimentally validated miRNA-gene interactions, we constructed regulatory networks specific for adeno-, squamous, neuroendocrine and metastatic LC. Molecular profiling discovered 137 significantly upregulated kinases (range 2-26-fold) of which 65 and 72, respectively, are tyrosine and serine-threonine kinases while 6 kinases carry driver mutations. Meanwhile, there are 21 kinases commonly upregulated irrespective of the histological type of LC. Bioinformatics decoded networks in which kinases function as master regulators. Typically, the networks consisted of 14, 9, 16 and 19 highly regulated kinases in adeno-, squamous, neuroendocrine and metastatic LC. Inhibition of kinases which function as master regulators disrupted the signalling networks, and their gene knock-down studies confirmed inhibition of cell proliferation in a panel of human LC cell lines. Additionally, the proposed molecular profiling enables KI-based therapies in patients with acquired drug resistance. CONCLUSIONS Our study broadens the perspective of KI-based therapies in LC, and we propose a framework to overcome acquired drug resistance.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| | | | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation SurgeryHannover Medical SchoolHannoverGermany
| | - Danny Jonigk
- Institute for PathologyHannover Medical SchoolHannoverGermany
| | - Jürgen Borlak
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
4
|
Fu R, Zhang C, Song MM, Gao X, Li F, Cai M, Jiang BY, Yang XN, Wu YL, Zhong WZ. A single-cell map of patients with non-small cell lung cancer harboring rare-driver mutations after anti-PD-1 treatment. Cancer Lett 2025; 616:217595. [PMID: 40021042 DOI: 10.1016/j.canlet.2025.217595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The effects of the tumor microenvironment the therapeutic efficacy of combining chemotherapy with checkpoint inhibitors in patients with lung cancer harboring rare -driver mutations remain unclear. We utilized single-cell RNA- and T-cell receptor (TCR) -sequencing to explore the immune and stromal cell profiles of 12 tumors and five tumor-adjacent tissues in seven patients with non-small cell lung cancer (NSCLCs) with rare -driver mutations treated with anti-PD-1 agents combined with chemotherapy. A class of highly expanded T -cells, known as GZMK + CD8+ effector memory T cells (GZMK + CD8+Tem), was enriched in both responsive tumors with and without rare driver mutations, suggesting similar anti-tumor immune mechanisms in both cohorts and that high levels of GZMK + CD8+Tem might be associated with effective responses to combination therapy. Non-responsive tumors exhibited a highly immunosuppressive M2-phenotype with enriched macrophages and monocytes. In non-major pathological response tumors, tumor cells interacted with alveolar and M0 macrophages via LAMC2-(ITGA6+ITGB1), possibly leading to M2 polarization. OAS1 was specifically expressed in CHIT1+ and FABP4+ macrophages and promoted macrophage polarization. These findings suggest that combination therapy reprogramed alveolar and M0-like macrophages to a pro-tumor phenotype, creating an immunosuppressive tumor microenvironment that resisted anti-PD1 therapy. In conclusion, GZMK + CD8+Tem is crucial for effective responses, whereas myeloid cells contribute to the immunosuppressive effects in anti-PD-1 therapies for NSCLCs with rare-driver mutations.
Collapse
Affiliation(s)
- Rui Fu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Fang Li
- Geneplus-Beijing Institute, Beijing, China
| | - Miao Cai
- Geneplus-Beijing Institute, Beijing, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Soonthonsrima T, Putra ID, Phookphan P, Ei ZZ, Yokoya M, Chanvorachote P. A Promising Resveratrol Analogue Suppresses CSCs in Non-Small-Cell Lung Cancer via Inhibition of the ErbB2 Signaling Pathway. Chem Res Toxicol 2025. [PMID: 40000408 DOI: 10.1021/acs.chemrestox.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The ErbB2 signaling pathway plays a crucial role in cancer stem cells (CSCs), governing cancer aggressiveness and proliferation. Targeting ErbB2 holds promise for advancing cancer therapeutics. Resveratrol (RES) and its derivatives have been noted for their ability to target proteins that are involved in CSCs. In this investigation, we synthesize novel derivatives of RES, aim at elucidating structure-activity relationships (SARs) that could enhance the anticancer properties of the RES analogues, and explore their capacities to suppress CSCs. YI-12, an O-benzyl-substituted 1,3-diphenylpropane, demonstrated the most potent anticancer activity against lung cancer cells (A549 and H460), showing high potential inhibiting cancer colony formation. Interestingly, not only does YI-12 suppress CSCs-related proteins, indicated by decreased expression of CSC-enhancing molecules such as CD133-, OCT4-, and CSC-related protein β-catenin, but it also induces apoptosis in CSC-rich spheroids after treatment. Additionally, molecular docking and bioinformatic analysis suggest ErbB2 as a potential target of the compound with a strong binding affinity (-6.709 kcal/mol) compared to the reference compound TAK-285 (-5.563 kcal/mol). YI-12's capability to bind and inhibit ErbB2 leads to the suppression of PI3K and AKT. In conclusion, we highlight the novel resveratrol derivative YI-12 for its ability to inhibit CSCs through the ErbB2 signaling pathway. This compound represents a promising structure that should be further developed for potential use in anticancer therapy.
Collapse
Affiliation(s)
- Tanapon Soonthonsrima
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ismail Dwi Putra
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Preeyaphan Phookphan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zin Zin Ei
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Wang Y, Yao F, Song L, Zhang M, Gong Z, Zhao Y, Xiong Y, He L. A supramolecular FRET signal amplification nanoprobe for high contrast and synchronous in situ imaging of cell surface receptor homodimers/heterodimers. Chem Sci 2025:d4sc08004a. [PMID: 39968283 PMCID: PMC11831222 DOI: 10.1039/d4sc08004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025] Open
Abstract
Epidermal growth factor receptor (EGFR) homodimers and heterodimers play significant roles in a variety of tumors, but current imaging probes remain problematic due to restricted contrast and sensitivity. Thus, we have developed aptamer-mediated activated conformational transitions to target the EGFR and HER2. Furthermore, based on signal amplification techniques, especially the FRET fluorescence enhancement properties of poly-β-CD, supramolecular FRET signal amplification nanoprobes were constructed to improve imaging contrast and sensitivity. The results confirmed that the fluorescence intensity of the supramolecular FRET group probe is 1.2 to 1.3 times that of the multi-FRET group and 11.3 to 23.2 times that of the single-FRET group. The results further confirmed that the supramolecular nanoprobe could not only be activated by tumor cells and tissues to achieve high-contrast imaging of EGFR/EGFR and EGFR/HER2 dimers, but also successfully distinguish tumor cells and tissues from normal cells and tissues. The strategy provides a generalized platform for high-contrast imaging of other dimers intending to deepen the understanding of the central roles of multiple dimers in cancer development.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Feng Yao
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Lulu Song
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Mengpan Zhang
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Zitong Gong
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Yunli Zhao
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Leiliang He
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| |
Collapse
|
7
|
Qi Z, Tokuhiro S, Odegaard JI, Wienke S, Karnoub M, Feng W, Shiga R, Smit EF, Goto Y, De Langen AJ, Goto K, Pereira K, Khambata-Ford S. Analytical and Clinical Validation of the Plasma-Based Guardant360 CDx Test for Assessing HER2 (ERBB2) Mutation Status in Patients with Non-Small-Cell Lung Cancer for Treatment with Trastuzumab Deruxtecan in DESTINY-Lung01/02. J Mol Diagn 2025; 27:119-129. [PMID: 39880580 DOI: 10.1016/j.jmoldx.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 01/31/2025] Open
Abstract
This study demonstrates the analytical and clinical validity of the approved (United States and Japan) plasma-based Guardant360 companion diagnostic (CDx) test for selecting patients with human epidermal growth factor receptor 2 (HER2 [ERBB2])-mutated (HER2m) non-small-cell lung cancer (NSCLC) for trastuzumab deruxtecan (T-DXd) treatment. Concordance between the Guardant360 CDx test and the plasma-based AVENIO ctDNA Expanded Kit Assay (AVENIO), as well as the tissue-based clinical trial assays (CTAs) was investigated. Clinical utility was assessed by comparing T-DXd clinical efficacy results of patients in DESTINY-Lung01/02 who tested positive for HER2 mutations using the Guardant360 CDx test to benchmark efficacy results from DESTINY-Lung01/02. Finally, concordance between the Guardant360 CDx test and the tissue-based Oncomine Dx Target (ODxT) test was explored. High concordance was observed between the Guardant360 CDx test versus AVENIO [positive percent agreement (PPA), 98.8%; negative percent agreement (NPA), 91.5%] and CTAs (DESTINY-Lung01 Cohort 2-PPA, 91.0%; NPA, 100%; DESTINY-Lung02 arm 1-PPA, 86.0%; NPA, 100%). Confirmed objective response rates were similar in patients with HER2m NSCLC identified by the Guardant360 CDx test and by CTAs. There was a high level of agreement between the Guardant360 CDx test and the ODxT test. The Guardant360 CDx test demonstrated analytical and clinical validity for identifying patients with HER2m NSCLC for T-DXd therapy; results support plasma-based testing when tissue-based testing is not feasible.
Collapse
Affiliation(s)
- Zhenhao Qi
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey.
| | | | | | | | | | - Wenqin Feng
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Ryota Shiga
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | - Egbert F Smit
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Koichi Goto
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | | |
Collapse
|
8
|
Tian X, Esmaeili H, Minich D, Seitz F, Roessner PM, Wind S, Grempler R, Gan G, Chan TS, Mahmoudi M, Sadrolhefazi B, Müller F. The effect of carbamazepine, a strong CYP3A inducer, on the pharmacokinetics of zongertinib in healthy male volunteers. Pharmacotherapy 2025; 45:94-103. [PMID: 39727284 PMCID: PMC11823298 DOI: 10.1002/phar.4641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Zongertinib (BI 1810631) is a potent, selective, and epidermal growth factor receptor (EGFR) wild-type sparing human epidermal growth factor receptor 2 (HER2) inhibitor. Based on in vitro data, the oxidative hepatic metabolism of zongertinib is principally driven by cytochrome P450 (CYP) 3A4/5. Therefore, zongertinib may be affected by strong CYP3A inducers, like carbamazepine. OBJECTIVE This study aimed to investigate the effect of multiple oral doses of carbamazepine on the pharmacokinetics of a single oral dose of zongertinib in healthy male subjects. METHODS This open-label, two-period, fixed-sequence clinical drug-drug interaction study examined the pharmacokinetics of a single 60-mg oral dose of zongertinib in the absence or presence of multiple oral doses of carbamazepine. The extent of drug-drug interaction was estimated using the adjusted geometric mean ratios (and 90% confidence intervals [CIs]) for the test treatment (zongertinib in the presence of carbamazepine) versus the reference treatment (zongertinib alone) for areas under the plasma concentration-time curve from time 0 to infinity and to the last quantifiable time point (AUC0-∞, AUC0-tz) and maximum measured plasma concentration (Cmax). RESULTS Sixteen subjects (all Caucasian males) received zongertinib alone in Study Period 1, and 15 of them received both zongertinib and carbamazepine in Study Period 2. Upon co-administration with carbamazepine in Study Period 2, AUC0-∞ and AUC0-tz of zongertinib were both reduced to 36.5% (90% CI: 32.0%-41.6% for AUC0-∞ and 31.9%-41.7% for AUC0-tz). The Cmax of zongertinib was reduced to 56.4% (90% CI: 45.1%-70.6%). CONCLUSION Zongertinib exposure was reduced by 63.5% when coadministered with the strong CYP3A inducer, carbamazepine.
Collapse
Affiliation(s)
- Xiaofan Tian
- Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticutUSA
| | | | - David Minich
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | | | | | - Sven Wind
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Rolf Grempler
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Guanfa Gan
- Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticutUSA
| | - Tom S. Chan
- Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticutUSA
| | | | | | - Fabian Müller
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
- Institute of Experimental and Clinical Pharmacology and ToxicologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
9
|
Kaneko MK, Suzuki H, Ohishi T, Nakamura T, Yanaka M, Tanaka T, Kato Y. Antitumor Activities of a Humanized Cancer-Specific Anti-HER2 Monoclonal Antibody, humH 2Mab-250 in Human Breast Cancer Xenografts. Int J Mol Sci 2025; 26:1079. [PMID: 39940848 PMCID: PMC11817376 DOI: 10.3390/ijms26031079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Monoclonal antibody (mAb) and cell-based immunotherapies represent cutting-edge strategies for cancer treatment. However, safety concerns persist due to the potential targeting of normal cells that express reactive antigens. Therefore, it is crucial to develop cancer-specific mAbs (CasMabs) that can bind to cancer-specific antigens and exhibit antitumor activity in vivo, thereby reducing the risk of adverse effects. We previously screened mAbs targeting human epidermal growth factor receptor 2 (HER2) and successfully developed a cancer-specific anti-HER2 mAb, H2Mab-250/H2CasMab-2 (mouse IgG1, kappa). In this study, we assessed both the in vitro and in vivo antitumor efficacy of the humanized H2Mab-250 (humH2Mab-250). Although humH2Mab-250 showed lower reactivity to HER2-overexpressed Chinese hamster ovary-K1 (CHO/HER2) and breast cancer cell lines (BT-474 and SK-BR-3) than trastuzumab in flow cytometry, both humH2Mab-250 and trastuzumab showed similar antibody-dependent cellular cytotoxicity (ADCC) against CHO/HER2 and the breast cancer cell lines in the presence of effector splenocytes. In addition, humH2Mab-250 exhibited significant complement-dependent cellular cytotoxicity (CDC) in CHO/HER2 and the breast cancer cell lines compared to trastuzumab. Furthermore, humH2Mab-250 possesses compatible in vivo antitumor effects against CHO/HER2 and breast cancer xenografts with trastuzumab. These findings highlight the distinct roles of ADCC and CDC in the antitumor effects of humH2Mab-250 and trastuzumab and suggest a potential direction for the clinical development of humH2Mab-250 for HER2-positive tumors.
Collapse
Affiliation(s)
- Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.K.K.); (T.N.); (M.Y.); (T.T.)
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.K.K.); (T.N.); (M.Y.); (T.T.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu 410-0301, Shizuoka, Japan;
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.K.K.); (T.N.); (M.Y.); (T.T.)
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.K.K.); (T.N.); (M.Y.); (T.T.)
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.K.K.); (T.N.); (M.Y.); (T.T.)
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (M.K.K.); (T.N.); (M.Y.); (T.T.)
| |
Collapse
|
10
|
Wilding B, Woelflingseder L, Baum A, Chylinski K, Vainorius G, Gibson N, Waizenegger IC, Gerlach D, Augsten M, Spreitzer F, Shirai Y, Ikegami M, Tilandyová S, Scharn D, Pearson MA, Popow J, Obenauf AC, Yamamoto N, Kondo S, Opdam FL, Bruining A, Kohsaka S, Kraut N, Heymach JV, Solca F, Neumüller RA. Zongertinib (BI 1810631), an Irreversible HER2 TKI, Spares EGFR Signaling and Improves Therapeutic Response in Preclinical Models and Patients with HER2-Driven Cancers. Cancer Discov 2025; 15:119-138. [PMID: 39248702 PMCID: PMC11726021 DOI: 10.1158/2159-8290.cd-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Mutations in ERBB2 (encoding HER2) occur in 2% to 4% of non-small cell lung cancer (NSCLC) and confer poor prognosis. ERBB-targeting tyrosine kinase inhibitors, approved for treating other HER2-dependent cancers, are ineffective in HER2-mutant NSCLC due to dose-limiting toxicities or suboptimal potency. We report the discovery of zongertinib (BI 1810631), a covalent HER2 inhibitor. Zongertinib potently and selectively blocks HER2, while sparing EGFR, and inhibits the growth of cells dependent on HER2 oncogenic driver events, including HER2-dependent human cancer cells resistant to trastuzumab deruxtecan. Zongertinib displays potent antitumor activity in HER2-dependent human NSCLC xenograft models and enhances the activities of antibody-drug conjugates and KRASG12C inhibitors without causing obvious toxicities. The preclinical efficacy of zongertinib translates in objective responses in patients with HER2-dependent tumors, including cholangiocarcinoma (SDC4-NRG1 fusion) and breast cancer (V777L HER2 mutation), thus supporting the ongoing clinical development of zongertinib. Significance: HER2-mutant NSCLC poses a challenge in the clinic due to limited options for targeted therapies. Pan-ERBB blockers are limited by wild-type EGFR-mediated toxicity. Zongertinib is a highly potent and wild-type EGFR-sparing HER2 inhibitor that is active in HER2-driven tumors in the preclinical and clinical settings.
Collapse
Affiliation(s)
| | | | - Anke Baum
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Neil Gibson
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | | | | - Yukina Shirai
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Dirk Scharn
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Anna C. Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Frans L. Opdam
- Division of Medical Oncology, Department of Clinical Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annemarie Bruining
- Department of Radiology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | |
Collapse
|
11
|
Melosky B, Juergens RA, Banerji S, Sacher A, Wheatley-Price P, Snow S, Tsao MS, Leighl NB, Martins I, Cheema P, Liu G, Chu QSC. The continually evolving landscape of novel therapies in oncogene-driven advanced non-small-cell lung cancer. Ther Adv Med Oncol 2025; 17:17588359241308784. [PMID: 39776537 PMCID: PMC11705342 DOI: 10.1177/17588359241308784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a highly heterogeneous disease that is frequently associated with a host of known oncogenic alterations. Advances in molecular diagnostics and drug development have facilitated the targeting of novel alterations such that the majority of NSCLC patients have driver mutations that are now clinically actionable. The goal of this review is to gain insights into clinical research and development principles by summary, analysis, and discussion of data on agents targeting known alterations in oncogene-driven, advanced NSCLC beyond those in the epidermal growth factor receptor (EGFR) and the anaplastic lymphoma kinase (ALK). A search of published and presented literature was conducted to identify prospective trials and integrated analyses reporting outcomes for agents targeting driver gene alterations (except those in EGFR and ALK) in molecularly selected, advanced NSCLC. Clinical efficacy data were extracted from eligible reports and summarized in text and tables. Findings show that research into alteration-directed therapies in oncogene-driven, advanced NSCLC is an extremely active research field. Ongoing research focuses on the expansion of new agents targeting both previously identified targets (particularly hepatocyte growth factor receptor (MET), human epidermal growth factor receptor 2 (HER2), and Kirsten rat sarcoma viral oncogene homolog (KRAS)) as well as novel, potentially actionable targets (such as neuregulin-1 (NRG1) and phosphatidylinositol 3-kinase (PI3K)). The refinement of biomarker selection criteria and the development of more selective and potent agents are allowing for increasingly specific and effective therapies and the expansion of clinically actionable alterations. Clinical advances in this field have resulted in a large number of regulatory approvals over the last 3 years. Future developments should focus on the continued application of alteration therapy matching principles and the exploration of novel ways to target oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Barbara Melosky
- Medical Oncology, BC Cancer Agency—Vancouver, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | | | - Shantanu Banerji
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Paul Wheatley-Price
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie Snow
- QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Ming-Sound Tsao
- University Health Network and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Natasha B. Leighl
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | | | - Parneet Cheema
- William Osler Health System, University of Toronto, Brampton, ON, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Quincy S. C. Chu
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Yang G, Tian L, Wang Y. Hyperprogressive disease induced by PD-1 inhibitor monotherapy in lung adenocarcinoma with HER2 exon 20 insertion: report of two cases and review of literature. Discov Oncol 2025; 16:12. [PMID: 39760792 PMCID: PMC11703795 DOI: 10.1007/s12672-025-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
Monotherapy with anti-programmed cell death protein 1 (PD-1) monoclonal antibody has been approved for the treatment of advanced non-small cell lung cancer with positive programmed cell death-ligand 1 (PD-L1) expression and oncogene wild type, which revealed survival benefit compared with chemotherapy. Nevertheless, certain patients develop rapid progression on anti-PD-1 inhibitor monotherapy. This novel pattern is called hyperprogressive disease (HPD), and the underlying mechanism and molecular characteristics still leaves not clear. Here, we reported two heavily pretreated advanced lung adenocarcinoma cases with HER2 exon 20 insertion who presented HPD after two cycles of anti-PD-1 inhibitor sintilimab monotherapy, and they both carried co-alterations in the PI3K/AKT/mTOR and cell cycle signaling pathway. We speculated that HER2 exon 20 insertion might be viewed as a potential biomarker to avoid single-agent immunotherapy in certain patients with driver mutations, or timely guide proper treatment strategies.
Collapse
Affiliation(s)
- Guangjian Yang
- Department of Respiratory Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Linyan Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| |
Collapse
|
13
|
Lazaratos AM, Bian DJH, Petrecca K, Guiot MC, Dankner M. A potential central nervous system niche for trastuzumab deruxtecan in patients with HER2-expressing non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:3824-3830. [PMID: 39830768 PMCID: PMC11736602 DOI: 10.21037/tlcr-24-856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Anna-Maria Lazaratos
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - David J. H. Bian
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | | | - Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Zanchetta C, De Marchi L, Macerelli M, Pelizzari G, Costa J, Aprile G, Cortiula F. Antibody-Drug Conjugates in Non-Small Cell Lung Cancer: State of the Art and Future Perspectives. Int J Mol Sci 2024; 26:221. [PMID: 39796075 PMCID: PMC11719753 DOI: 10.3390/ijms26010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Antibody-drug conjugates (ADCs) represent one of the most promising and rapidly emerging anti-cancer therapies because they combine the cytotoxic effect of the conjugate payload and the high selectivity of the monoclonal antibody, which binds a specific membrane antigen expressed by the tumor cells. In non-small cell lung cancer (NSCLC), ADCs are being investigated targeting human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), trophoblast cell surface antigen 2 (TROP2), Mesenchymal-epithelial transition factor (c-MET), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). To date, Trastuzumab deruxtecan is the only ADC that has been approved by the FDA for the treatment of patients with NSCLC, but several ongoing studies, both using ADCs as monotherapy and combined with other therapies, are investigating the efficacy of new ADCs. In this review, we describe the structures and mechanism of action of different ADCs; we present the evidence derived from the main clinical trials investigating ADCs' efficacy, focusing also on related toxicity; and, finally, we discuss future perspectives in terms of toxicity management, possible biomarkers, and the identification of resistance mechanisms.
Collapse
Affiliation(s)
- Carol Zanchetta
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (C.Z.); (L.D.M.); (J.C.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (M.M.); (G.P.); (G.A.)
| | - Lorenzo De Marchi
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (C.Z.); (L.D.M.); (J.C.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (M.M.); (G.P.); (G.A.)
| | - Marianna Macerelli
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (M.M.); (G.P.); (G.A.)
| | - Giacomo Pelizzari
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (M.M.); (G.P.); (G.A.)
| | - Jacopo Costa
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (C.Z.); (L.D.M.); (J.C.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (M.M.); (G.P.); (G.A.)
| | - Giuseppe Aprile
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (M.M.); (G.P.); (G.A.)
| | - Francesco Cortiula
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (M.M.); (G.P.); (G.A.)
- Department of Respiratory Medicine, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
15
|
Lan M, Wang T, Luo D, Chen Y, Liang W, Kong R, Xie Q. Application of disitamab vedotin in the multiline treatment of EGFR mutation-positive lung adenocarcinoma with Her-2 overexpression. Front Oncol 2024; 14:1472545. [PMID: 39726714 PMCID: PMC11669575 DOI: 10.3389/fonc.2024.1472545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/06/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To explore the efficacy of c in the multiline treatment of late-stage lung adenocarcinoma with Her-2 overexpression and epidermal growth factor receptor (EGFR) mutations. Methods We summarize the diagnosis and treatment of a female patient with EGFR 21L858R mutation combined with Her-2 overexpression in advanced lung adenocarcinoma, and analyze the effect of c in her treatment process. Results The patient was diagnosed with lung adenocarcinoma 8 years ago. After first-line treatment, the lung lesions enlarged. Following second-line treatment 5 years ago, intracranial metastasis occurred. After third-line treatment 3 years ago, intracranial and lung lesions enlarged. New lesions in the lungs, liver, and spleen appeared after fourth-line treatment 32 months ago. Lung progression occurred after fifth-line treatment 29 months ago. Liver and lung progression occurred after sixth-line treatment 22 months ago. Lung progression occurred after seventh-line treatment 19 months ago. The patient underwent eighth-line treatment with disitamab vedotin (RC48) + lung radiotherapy + liver intervention 13 months ago. Currently, the patient's condition is stable, with a good quality of life, and the efficacy assessment is stable disease (SD). Conclusion: Her-2 overexpression can occur in late-stage EGFR-mutant lung adenocarcinoma after multiline treatment. RC48 can achieve sustained remission in these patients.
Collapse
Affiliation(s)
- Meiling Lan
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyun Wang
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Diexiao Luo
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Chen
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Liang
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Kong
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qichao Xie
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Gupta A, Michelini F, Shao H, Yeh C, Drago JZ, Liu D, Rosiek E, Romin Y, Ghafourian N, Thyparambil S, Misale S, Park W, de Stanchina E, Janjigian YY, Yaeger R, Li BT, Chandarlapaty S. EGFR-directed antibodies promote HER2 ADC internalization and efficacy. Cell Rep Med 2024; 5:101792. [PMID: 39437778 PMCID: PMC11604483 DOI: 10.1016/j.xcrm.2024.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Trastuzumab deruxtecan (T-DXd) is a human epidermal growth factor receptor 2 (HER2)-targeting antibody drug conjugate that has remarkable activity in HER2-positive cancers. However, the degree of benefit of T-DXd is not uniform among solid tumors even with high levels of HER2. Despite high HER2 expression, the HER2/T-DXd complex may not always undergo internalization and payload release dependent on the receptor's conformation and context. We hypothesize that epidermal growth factor receptor (EGFR), a dimerization partner of HER2, can modulate HER2 trafficking through endocytic pathways and affect T-DXd uptake. We demonstrate that elevated EGFR expression levels can promote EGFR/HER2 heterodimer formation and suppress T-DXd internalization and efficacy. Knockdown of EGFR expression or pharmacologic stimulation of EGFR endocytosis with EGFR monoclonal antibodies restores T-DXd trafficking and antitumor activity in EGFR-overexpressing cancers in vivo. Our results reveal EGFR overexpression to be a potential mechanism of resistance to T-DXd, which can be overcome by combination therapy strategies targeting EGFR.
Collapse
Affiliation(s)
- Avantika Gupta
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Flavia Michelini
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Celine Yeh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Dazhi Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rosiek
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Sandra Misale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
Saha N, Lee SG, Brockmann EC, de la Cruz MJ, Goldgur Y, Mendoza RP, Stanchina ED, Love TM, Marvald J, Xu Y, Xu K, Himanen JP, Lamminmäki U, Veach D, Nikolov DB. Fully human monoclonal antibody targeting the cysteine-rich substrate-interacting region of ADAM17 on cancer cells. Biomed Pharmacother 2024; 180:117605. [PMID: 39461016 PMCID: PMC11787792 DOI: 10.1016/j.biopha.2024.117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
ADAM17 sheds EGFR/erbB ligands and triggers oncogenic pathways that lead to the progression of solid tumors. We targeted the ADAM17 disintegrin and cysteine rich domain region (D+C) to generate a panel of single-chain antibody fragments (scFvs) that selectively bind to the D or C domains of ADAM17, but not of ADAM10 or ADAM19. From the panel, we selected one scFv, referred to as C12, based on its high binding affinity towards the target, and re-formatted it to a full IgG for further studies. High-resolution cryo-electron microscopy studies documented that the mAb binds to the ADAM17 C-domain that in ADAM proteases, notably ADAM10 and ADAM17, is known to impart substrate-specificity. The C12 mAb significantly inhibited EGFR phosphorylation in cancer cell lines by hindering the cleavage of EGFR ligands tethered to the cell surface. This inhibition provides a mechanism for potential anti-tumor effects, and indeed C12 diminished the viability of a variety of EGFR-expressing cancer cell lines. Cell-based ELISA studies revealed that C12 preferentially bound to activated ADAM17 present on tumor cells, as compared to the autoinhibited ADAM17 that is the predominant form on HEK293 and other non-tumor cells. C12 also exhibited tumor growth inhibition in an ovarian cancer xenograft mouse model. Consistent with its selective tumor cell binding in vitro, radioimmuno PET (positron emission tomography) imaging with 89Zr-DFO-C12 in mouse xenograft models confirmed tumoral accumulation of the C12 mAb.
Collapse
Affiliation(s)
- Nayanendu Saha
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Sang Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | | | - M Jason de la Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Rachelle P Mendoza
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Elisa de Stanchina
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Tanzy M Love
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Josh Marvald
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Yan Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Juha P Himanen
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
18
|
Ni C, Zhang L, Yu X, Pang Y, Xu J. Response to furmonertinib in a patient with non-small cell lung cancer harboring HER2 exon 21 insertion mutation: a case report. Front Oncol 2024; 14:1440379. [PMID: 39529833 PMCID: PMC11551043 DOI: 10.3389/fonc.2024.1440379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Background This is the first case report describing a patient with non-small cell lung cancer (NSCLC) harboring two rare human epidermal growth factor receptor 2 (HER2) exon 21 insertion mutations, who responded to furmonertinib treatment. Furmonertinib maybe one effective and economical treatment for NSCLC patients harboring HER2 mutations with minor side effects. Case description We present a case report of a 49-year-old female diagnosed with stage IV lung adenocarcinoma who complained of irritating dry cough symptoms followed by chest tightness. Firstly, we describe the patient's treatment history, including failed third-line combination treatments of systemic chemotherapy with bevacizumab or carrelizumab or anlotinib, primary lung tumor recurrence, bilateral lung metastases progression, and new brain metastatic lesion detection. Next, we detail the patient's fourth-line treatment with radiotherapy for brain metastases and two cycles of bevacizumab plus Abraxane and cisplatin, however, the disease progressed and relapsed. After that, comprehensive genomic profiling revealed two HER2 exon 21 insertion mutations. Subsequently, the patient received targeted therapy with furmonertinib and achieved 11 months of progression-free survival. The patient received pyrrotinib therapy for 2 months after disease progression, but the disease continued to progress. In October 2023, the patient received therapy with furmonertinib again, and a month later, the disease went into partial remission. However, the patient died due to hypoproteinemia combined with severe pneumonia in December 2023. Conclusion Furmonertinib may be effective for NSCLC patients with HER2 T8962A and L869R mutations and further studies are needed to confirm these results in prospective clinical trials.
Collapse
Affiliation(s)
- Chunxiao Ni
- Department of Minimally Invasive Oncology, Tai’an City Central Hospital, Tai’an, Shandong, China
| | - Ling Zhang
- Department of Medical Oncology, Tai’an City Central Hospital, Tai’an, Shandong, China
| | - Xin Yu
- Department of Spine Surgery, Tai’an City Central Hospital, Tai’an, Shandong, China
| | - Yu Pang
- Department of Pathology, Tai’an City Central Hospital, Tai’an, Shandong, China
| | - Jiaju Xu
- Department of Medical Oncology, Tai’an City Central Hospital, Tai’an, Shandong, China
| |
Collapse
|
19
|
Su Y, Huo T, Wang Y, Li J. Construction and clinical significance of prognostic risk markers based on cancer driver genes in lung adenocarcinoma. Clin Transl Oncol 2024:10.1007/s12094-024-03703-1. [PMID: 39292390 DOI: 10.1007/s12094-024-03703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Cancer driver genes (CDGs) have been reported as key factors influencing the progression of lung adenocarcinoma (LUAD). However, the role of CDGs in LUAD prognosis has not been fully elucidated. METHODS LUAD transcriptome data and CDG-related data were obtained from public databases and literature. Differentially expressed CDGs (DE-CDGs) greatly associated with LUAD survival (P < 0.05) were identified to establish a prognostic model. In addition, immune analysis of high-risk (HR) and low-risk (LR) groups was conducted by utilizing the CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms to assess immune differences. Subsequently, mutation analysis was conducted using maftools. Finally, candidate drugs were identified using the CellMiner database. RESULTS 40 DE-CDGs significantly associated with LUAD survival and 11 DE-CDGs associated with prognosis were identified through screening. Regression analysis revealed that risk score can independently predict LUAD prognosis (P < 0.05). Immune landscape analysis revealed that compared to the HR group, the LR group had higher immune scores and high infiltration of various immune cells such as follicular helper B cells and T cells. Mutation landscape analysis demonstrated that missense mutation was the most common mutation type in both risk groups. Drug prediction analysis revealed strong correlations of fulvestrant, S-63845, sapacitabine, lomustine, BLU-667, SR16157, motesanib, AZD-9496, XK-469, dimethylfasudil, P-529, and imatinib with the model genes, suggesting their potential as candidate drugs targeting the model genes. CONCLUSION This study identified 11 effective biomarkers, DE-CDGs, which can predict LUAD prognosis and explored the biological significance of CDGs in LUAD prognosis, immunotherapy, and treatment.
Collapse
Affiliation(s)
- Yazhou Su
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan province, China.
| | - Tingting Huo
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| | - Yanan Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| | - Jingyan Li
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| |
Collapse
|
20
|
Hungria V, Sureda A, Campelo GR, Salvino MA, Ramasamy K. Proceedings from the First Onco Summit: LATAM Chapter, 19-20 May 2023, Rio de Janeiro, Brazil. Cancers (Basel) 2024; 16:3063. [PMID: 39272921 PMCID: PMC11394439 DOI: 10.3390/cancers16173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The Onco Summit 2023: The Latin American (LATAM) Chapter took place over two days, from 19-20 May 2023, in Brazil. The event aimed to share the latest updates across various oncology disciplines, address critical clinical challenges, and exchange best practices to ensure optimal patient treatment. More than 30 international and regional speakers and more than 300 oncology specialists participated in the Summit. The Summit discussions centered on common challenges and therapeutic advances in cancer care, with a specific focus on the unique obstacles faced in LATAM and examples of adaptable strategies to address these challenges. The Summit also facilitated the establishment of a network of oncologists, hematologists, and scientists in LATAM, enabling collaboration to improve cancer care, both in this region and globally, through drug development and clinical research. This report summarizes the key discussions from the Summit for the global and LATAM oncology community.
Collapse
Affiliation(s)
- Vania Hungria
- Hematology, Faculty of Medical Sciences of Santa Casa de São Paulo, São Paulo 01224-001, Brazil
| | - Anna Sureda
- Clinical Hematology Department, Catalan Institut Català d'Oncologia-L'Hospitalet, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), University of Barcelona (UB), 08908 Barcelona, Spain
| | - Garcia Rosario Campelo
- Thoracic Tumors Unit, Medical Oncology Department, University Hospital A Coruña Biomedical Research Institute (INIBIC), 15006 A Coruña, Spain
| | - Marco Aurélio Salvino
- Cell Therapy, D'OR Institute Research & Education (IDOR)/PPGMS-Federal University of Bahia (UFBA), Salvador 40110-100, Brazil
| | - Karthik Ramasamy
- Oxford Translational Myeloma Centre, NDORMS, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
21
|
Wang YJ, Zeng DX. Afatinib in Advanced Lung Squamous Cancer Harboring HER2 Mutation in Exon 17 Plus Amplification. Am J Ther 2024; 31:e594-e596. [PMID: 39292840 DOI: 10.1097/mjt.0000000000001740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Affiliation(s)
- Yu-Ji Wang
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, People's Republic of China
| | | |
Collapse
|
22
|
Yoon J, Oh DY. HER2-targeted therapies beyond breast cancer - an update. Nat Rev Clin Oncol 2024; 21:675-700. [PMID: 39039196 DOI: 10.1038/s41571-024-00924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
The receptor tyrosine-kinase HER2 (also known as ErbB2) is a well-established therapeutic target in patients with breast or gastric cancer selected on the basis of HER2 overexpression on immunohistochemistry and/or ERBB2 amplification on in situ hybridization. With advances in cancer molecular profiling and increased implementation of precision medicine approaches into oncology practice, actionable HER2 alterations in solid tumours have expanded to include ERBB2 mutations in addition to traditional HER2 overexpression and ERBB2 amplification. These various HER2 alterations can be found in solid tumour types beyond breast and gastric cancer, although few HER2-targeted therapeutic options have been established for the other tumour types. Nevertheless, during the 5 years since our previous Review on this topic was published in this journal, obvious and fruitful progress in the development of HER2-targeted therapies has been made, including new disease indications, innovative drugs with diverse mechanisms of action and novel frameworks for approval by regulatory authorities. These advances have culminated in the recent histology-agnostic approval of the anti-HER2 antibody-drug conjugate trastuzumab deruxtecan for patients with HER2-overexpressing solid tumours. In this new Review, we provide an update on the current development landscape of HER2-targeted therapies beyond breast cancer, as well as anticipated future HER2-directed treatment strategies to overcome resistance and thereby improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Jeesun Yoon
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Youn Oh
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Meyer ML, Fitzgerald BG, Paz-Ares L, Cappuzzo F, Jänne PA, Peters S, Hirsch FR. New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet 2024; 404:803-822. [PMID: 39121882 DOI: 10.1016/s0140-6736(24)01029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 08/12/2024]
Abstract
Targeted therapies and immunotherapies have radically improved treatment for advanced non-small-cell lung cancer (NSCLC). Tyrosine kinase inhibitors targeting oncogenic driver mutations continue to evolve over multiple generations to enhance effectiveness and tackle drug resistance. Immune checkpoint inhibitors remain integral for the treatment of NSCLCs that do not have specific actionable genetic mutations. Antibody-drug conjugates and bispecific antibodies are being integrated into treatment guidelines, and emerging therapies include T-cell engagers, cellular therapies, cancer vaccines, and external devices. Despite these advances, challenges remain in identifying predictive biomarkers to individually tailor treatments, abrogate resistance, reduce costs, and ensure optimal cancer treatment accessibility.
Collapse
Affiliation(s)
- May-Lucie Meyer
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Health System, New York City, NY, USA
| | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H12O Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| | | | - Pasi A Jänne
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Health System, New York City, NY, USA.
| |
Collapse
|
24
|
Pan X, Zhou X. Long term survival achieved through combination of almonertinib and pyrotinib in EGFR-mutant/HER2-amplified advanced NSCLC patient: a case report and literature review. Front Oncol 2024; 14:1397238. [PMID: 39184039 PMCID: PMC11341367 DOI: 10.3389/fonc.2024.1397238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Backgroud Human epithelial growth factor receptor 2 (HER2) amplification is an important mechanism of acquired resistance to anti-epidermal growth factor receptor (EGFR) therapy in non-small cell lung cancer (NSCLC) patients. For patients with both EGFR mutation and HER2 amplification, there is currently no unified standard treatment, and further exploration is needed on how to choose the therapy. Methods and results A female NSCLC patient developed bone and brain metastases 14 and 42 months after radical surgery, respectively. The second genetic sequencing detected EGFR L858R mutation and HER2 amplification, and therefore initiated treatment with almonertinib and pyrotinib. The patient achieved partial remission and did not show any further progression during the follow-up period. Conclusion For NSCLC patients with both EGFR mutation and HER2 amplification, the combination of almonertinib and pyrotinib is a valuable therapy that can continuously reduce tumor burden and achieve long-term survival.
Collapse
Affiliation(s)
| | - Xiao Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Amrell L, Bär E, Glasow A, Kortmann RD, Seidel C, Patties I. Enhanced anti-tumor effects by combination of tucatinib and radiation in HER2-overexpressing human cancer cell lines. Cancer Cell Int 2024; 24:277. [PMID: 39107782 PMCID: PMC11302197 DOI: 10.1186/s12935-024-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Tucatinib (TUC), a HER2-directed tyrosine kinase inhibitor, is the first targeted drug demonstrating intracranial efficacy and significantly prolonged survival in metastatic HER2-positive breast cancer (BC) patients with brain metastases. Current treatments for brain metastases often include radiotherapy, but little is known about the effects of combination treatment with TUC. Therefore, we examined the combined effects of irradiation and TUC in human HER2-overexpressing BC, non-small cell lung cancer (NSCLC), and colorectal cancer (CRC) cell lines. For the latter two, a standard therapy successfully targeting HER2 is yet to be established. METHODS Nine HER2-overexpressing (BC: BT474, ZR7530, HCC1954; CRC: LS411N, DLD1, COLO201; NSCLC: DV90, NCI-H1781) and three control cell lines (BC: MCF7, HCC38; NSCLC: NCI-H2030) were examined. WST-1 assay (metabolic activity), BrdU ELISA (proliferation), γH2AX assay (DNA double-strand breaks (DSB), Annexin V assay (apoptosis), and clonogenic assay (clonogenicity) were performed after treatment with TUC and/or irradiation (IR). The relevance of the treatment sequence was analyzed exemplarily. RESULTS In BC, combinatorial treatment with TUC and IR significantly decreased metabolic activity, cell proliferation, clonogenicity and enhanced apoptotis compared to IR alone, whereby cell line-specific differences occurred. In the PI3KCA-mutated HCC1954 cell line, addition of alpelisib (ALP) further decreased clonogenicity. TUC delayed the repair of IR-induced DNA damage but did not induce DSB itself. Investigation of treatment sequence indicated a benefit of IR before TUC versus IR after TUC. Also in CRC and NSCLC, the combination led to a stronger inhibition of metabolic activity, proliferation, and clonogenic survival (only in NSCLC) than IR alone, whereby about 10-fold higher concentrations of TUC had to be applied than in BC to induce significant changes. CONCLUSION Our data indicate that combination of TUC and IR could be more effective than single treatment strategies for BC. Thereby, treatment sequence seems to be an important factor. The lower sensitivity to TUC in NSCLC and particularly in CRC (compared to BC) implicates, that tumor promotion there might be less HER2-related. Combination with inhibitors of other driver mutations may aid in overcoming partial TUC resistance. These findings are of high relevance to improve long-time prognosis especially in brain-metastasized situations given the intracranial activity of TUC.
Collapse
Affiliation(s)
- Lukas Amrell
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Eric Bär
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig, Germany
| | - Rolf-Dieter Kortmann
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig, Germany
| | - Ina Patties
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany.
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig, Germany.
| |
Collapse
|
26
|
Yap NY, Perumal K, Rajadurai P. Prevalence and treatment of human epidermal growth factor receptor 2-altered non-small cell lung cancer: a retrospective analysis and systematic literature review. Ecancermedicalscience 2024; 18:1734. [PMID: 39421181 PMCID: PMC11484687 DOI: 10.3332/ecancer.2024.1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 10/19/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is known for its oncogenic activities in diverse cancers, including non-small cell lung cancer (NSCLC). However, the prevalence of HER2 alterations in Malaysian NSCLC patients remains unreported. This study examined the prevalence and characteristics of HER2 mutations and amplification in a Malaysian cohort. Additionally, a systematic review was conducted to evaluate the global prevalence of HER2 alterations in NSCLC, as well as the efficacy of HER2-targeted therapies observed in clinical trials. NSCLC tumour samples received from October 2019 to December 2022 for next-generation sequencing diagnostics were included in the retrospective analysis. In this patient cohort, HER2 alteration was present in 5.8% of patients; 3.9% had HER2 mutations, 1.5% had HER2 amplifications and 0.4% were both HER2-mutated and amplified. HER2 exon 20 insertions were the most common HER2 variants, detected in 47/59 (79.7%) of HER2-mutated patients. Among cases with HER2 exon 20 insertions, the Y772_A775dup variant was found in 34 patient samples. HER2-mutated patients were significantly younger than non-HER2-mutants (61 versus 64 years old; p = 0.046) and were inclined to be female and never-smokers, albeit not statistically significant. Patients with HER2 amplification were more likely to have progressed post-tyrosine kinase inhibitor therapy (p = 0.015). The systematic review highlighted a global variation in the prevalence of HER2 alterations in NSCLC, ranging from 0.3% to 9.1% for mutations and 0.2% to 19% for amplification. Finally, phase II clinical trials involving HER2-altered NSCLC patients demonstrated promising treatment outcomes with trastuzumab deruxtecan, trastuzumab emtansine, pyrotinib, pyrotinib + apatinib and trastuzumab + pertuzumab + docetaxel. In conclusion, the prevalence of HER2 alteration among Malaysian NSCLC patients falls within the global range. A systematic review of clinical trials revealed promising treatment outcomes and Malaysian NSCLC patients with HER2 alterations are anticipated to similarly benefit from HER2-targeted therapies.
Collapse
Affiliation(s)
- Ning Yi Yap
- Laboratory, Subang Jaya Medical Centre, Subang Jaya 47500, Selangor, Malaysia
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Komathi Perumal
- Laboratory, Subang Jaya Medical Centre, Subang Jaya 47500, Selangor, Malaysia
- ePink Health Sdn. Bhd., Shah Alam 40150, Selangor, Malaysia
| | - Pathmanathan Rajadurai
- Laboratory, Subang Jaya Medical Centre, Subang Jaya 47500, Selangor, Malaysia
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
- Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
27
|
Li Z, Song Z, Hong W, Yang N, Wang Y, Jian H, Liang Z, Hu S, Peng M, Yu Y, Wang Y, Jiao Z, Zhao K, Song K, Li Y, Shi W, Lu S. SHR-A1811 (antibody-drug conjugate) in advanced HER2-mutant non-small cell lung cancer: a multicenter, open-label, phase 1/2 study. Signal Transduct Target Ther 2024; 9:182. [PMID: 39004647 PMCID: PMC11247081 DOI: 10.1038/s41392-024-01897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
A dose-escalation and expansion, phase 1/2 study (ClinicalTrials.gov, NCT04818333) was conducted to assess the novel antibody-drug conjugate SHR-A1811 in pretreated HER2-altered advanced non-small cell lung cancer (NSCLC). Here, we report results from the phase 1 portion. Patients who had previously failed or were intolerant to platinum-based chemotherapy were enrolled and received SHR-A1811 intravenously at doses of 3.2 to 8.0 mg/kg every 3 weeks. Dose escalation followed a Bayesian logistic regression model that included overdose control, with subsequent selection of tolerable levels for dose expansion. Overall, 63 patients were enrolled, including 43 receiving a recommended dose for expansion of 4.8 mg/kg. All patients had HER2-mutant disease. Dose-limiting toxicity occurred in one patient in the 8.0 mg/kg dose cohort. Grade ≥ 3 treatment-related adverse events occurred in 29 (46.0%) patients. One patient in the 6.4 mg/kg cohort died due to interstitial lung disease. As of April 11, 2023, the 4.8 mg/kg cohort showed an objective response rate of 41.9% (95% CI 27.0-57.9), and a disease control rate of 95.3% (95% CI 84.2-99.4). The median duration of response was 13.7 months, with 13 of 18 responses ongoing. The median progression-free survival was 8.4 months (95% CI 7.1-15.0). SHR-A1811 demonstrated favourable safety and clinically meaningful efficacy in pretreated advanced HER2-mutant NSCLC.
Collapse
Affiliation(s)
- Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Zhengbo Song
- Phase I Clinical Trial Ward, Zhejiang Cancer Hospital, Hangzhou, 310000, China
| | - Wei Hong
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China
| | - Nong Yang
- Department of Lung & Gastrointestinal Oncology, Hunan Cancer Hospital, Changsha, 410031, China
| | - Yongsheng Wang
- Thoracic Oncology Ward/Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Jian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Zibin Liang
- Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430000, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430200, China
| | - Yan Yu
- Department of Thoracic Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yan Wang
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Zicong Jiao
- Geneplus-Beijing, Co., Ltd., Beijing, 102206, China
| | - Kaijing Zhao
- Jiangsu Hengrui Pharmaceuticals, Co., Ltd., Shanghai, 200120, China
| | - Ke Song
- Jiangsu Hengrui Pharmaceuticals, Co., Ltd., Shanghai, 200120, China
| | - You Li
- Jiangsu Hengrui Pharmaceuticals, Co., Ltd., Shanghai, 200120, China
| | - Wei Shi
- Jiangsu Hengrui Pharmaceuticals, Co., Ltd., Shanghai, 200120, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
28
|
Cheng X. A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes (Basel) 2024; 15:903. [PMID: 39062682 PMCID: PMC11275319 DOI: 10.3390/genes15070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2), a targetable transmembrane glycoprotein receptor of the epidermal growth factor receptor (EGFR) family, plays a crucial role in cell proliferation, survival, and differentiation. Aberrant HER2 signaling is implicated in various cancers, particularly in breast and gastric cancers, where HER2 overexpression or amplification correlates with aggressive tumor behavior and poor prognosis. HER2-activating mutations contribute to accelerated tumorigenesis and metastasis. This review provides an overview of HER2 biology, signaling pathways, mechanisms of dysregulation, and diagnostic approaches, as well as therapeutic strategies targeting HER2 in cancer. Understanding the intricate details of HER2 regulation is essential for developing effective targeted therapies and improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- Department of Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63108, USA
| |
Collapse
|
29
|
Boldig C, Boldig K, Mokhtari S, Etame AB. A Review of the Molecular Determinants of Therapeutic Response in Non-Small Cell Lung Cancer Brain Metastases. Int J Mol Sci 2024; 25:6961. [PMID: 39000069 PMCID: PMC11241836 DOI: 10.3390/ijms25136961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related morbidity and mortality worldwide. Metastases in the brain are a common hallmark of advanced stages of the disease, contributing to a dismal prognosis. Lung cancer can be broadly classified as either small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). NSCLC represents the most predominant histology subtype of lung cancer, accounting for the majority of lung cancer cases. Recent advances in molecular genetics, coupled with innovations in small molecule drug discovery strategies, have facilitated both the molecular classification and precision targeting of NSCLC based on oncogenic driver mutations. Furthermore, these precision-based strategies have demonstrable efficacy across the blood-brain barrier, leading to positive outcomes in patients with brain metastases. This review provides an overview of the clinical features of lung cancer brain metastases, as well as the molecular mechanisms that drive NSCLC oncogenesis. We also explore how precision medicine-based strategies can be leveraged to improve NSCLC brain metastases.
Collapse
Affiliation(s)
- Catherine Boldig
- Department of Neurology, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Kimberly Boldig
- Department of Internal Medicine, University of Florida Jacksonville, 655 W. 8th St., Jacksonville, FL 32209, USA
| | - Sepideh Mokhtari
- Moffitt Cancer Center, Department of Neuro-Oncology, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B Etame
- Moffitt Cancer Center, Department of Neuro-Oncology, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
30
|
Waliany S, Neal JW, Engel-Nitz N, Lam C, Lin F, Park L, Le L, Nagasaka M. HER2-Mutant Advanced and/or Metastatic Non-Small-Cell Lung Cancer: A US Electronic Health Records Database Analysis of Clinical Characteristics, Treatment Practice Patterns, and Outcomes. Clin Lung Cancer 2024; 25:319-328.e1. [PMID: 38403548 DOI: 10.1016/j.cllc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Real-world data for advanced/metastatic non-small-cell lung cancer (NSCLC) with mutations in human epidermal growth factor 2 (HER2) are scarce. We aimed to assess treatment patterns and outcomes among patients with HER2-mutant advanced/metastatic NSCLC. PATIENTS AND METHODS This retrospective nationwide electronic health record study evaluated patient characteristics, treatment patterns, treatment duration, and overall survival for adults with HER2-mutant advanced/metastatic NSCLC without epidermal growth factor receptor mutation. RESULTS Of 55 included patients, median (quartile 1 [Q1]-quartile 3 [Q3]) age was 63.0 (58.0-72.0) years, 42 (76%) were women, and 39 (71%) were current/former smokers. In first-line therapy, 14 regimens were used for median (Q1-Q3) duration of 3.1 (2.4-6.2) months, with most patients (n = 39, 71%) receiving platinum-based chemotherapy alone or in combination with other agents. Median (95% CI) overall survival from first-line treatment initiation was 19.0 (12.2-not estimable) months, with no significant association with age, sex, or smoking status. Thirty-five (64%) patients received second-line therapy for median (Q1-Q3) duration of 3.3 (2.0-5.2) months. Fourteen second-line regimens were used; most commonly immunotherapy alone or in combination with other agents (n = 16, 46%). Sixteen (46%) patients received third-line therapy for median (Q1-Q3) duration of 1.9 (1.3-2.7) months. Nine third-line regimens were used, with 7 (44%) patients receiving HER2-directed agents. CONCLUSION First- and second-line treatments for HER2-mutant NSCLC varied widely and treatment duration was short. The approval of trastuzumab deruxtecan for NSCLC supports wider HER2 testing to identify eligible patients for HER2-directed therapy.
Collapse
Affiliation(s)
- Sarah Waliany
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Joel W Neal
- Stanford University Medical Center, Stanford, CA
| | | | - Clara Lam
- AstraZeneca Pharmaceuticals LP, Gaithersburg, MD
| | - Feng Lin
- Daiichi Sankyo, Inc., Basking Ridge, NJ
| | - Leah Park
- AstraZeneca Pharmaceuticals LP, Gaithersburg, MD
| | - Lisa Le
- Optum Life Sciences, Eden Prairie, MN
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Orange, CA.
| |
Collapse
|
31
|
Lee Y, Lee B, Choi YL, Kang DW, Han J. Clinicopathologic and Molecular Characteristics of HER2 (ERBB2)-Altered Non-Small Cell Lung Cancer: Implications for Precision Medicine. Mod Pathol 2024; 37:100490. [PMID: 38588887 DOI: 10.1016/j.modpat.2024.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
The heterogeneous relationship between protein expression, amplification, and mutations in human epidermal growth factor receptor 2 (HER2) in non-small cell lung cancer (NSCLC) and the optimal methods for detecting these alterations remain unclear. We aimed to elucidate the clinicopathological and molecular characteristics of HER2-altered NSCLC and investigate practical approaches for identifying patients who might benefit from HER2-targeted therapies. Using next-generation sequencing data from 1680 individuals, we searched for patients with HER2-altered NSCLCs, including amplifications and mutations. Clinicopathological data and tissue slides were reviewed. Immunohistochemistry (IHC) and silver in situ hybridization were performed according to the American Society of Clinical Oncology/College of American Pathologists guidelines. Our analysis identified 89 (5.3%) patients with HER2-altered NSCLCs, comprising 30 (1.8%) with amplification and 59 (3.6%) mutations, and they were compared with 165 control patients. Of the 59 HER2-mutated cases, 52 harbored tyrosine kinase domain (TKD) mutations, primarily HER2 exon 20 insertions. HER2 TKD alterations were associated with younger age, female sex, nonsmoking status, adenocarcinoma with a micropapillary pattern, lung-to-lung metastasis, and poor overall survival. The 33 patients with TKD mutations and 3 with non-TKD point mutations showed incomplete or complete membranous HER2 immunoreactivity (1+ and 2+, 61.07%). Six patients exhibiting amplifications had an IHC score of ≤2+ despite their high copy numbers and concomitantly displayed other actionable EGFR, KRAS, SMARCA4, and other HER2 mutations. These HER2-altered NSCLCs with molecular coalterations showed heterogeneous patterns through HER2 IHC and silver in situ hybridization. Therefore, next-generation sequencing should be used to identify HER2 mutations in patients with NSCLC who present with concomitant alterations. In addition, the above clinicopathological characteristics and HER2 IHC results can be valuable determinants for identifying patients with HER2-altered NSCLC. These insights hold promise for the development of more effective diagnostic and therapeutic strategies for this complex subset of NSCLC patients.
Collapse
Affiliation(s)
- Yurimi Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Pathology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Boram Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Dong-Wook Kang
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Joungho Han
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Shroff RT, Bachini M. Treatment options for biliary tract cancer: unmet needs, new targets and opportunities from both physicians' and patients' perspectives. Future Oncol 2024; 20:1435-1450. [PMID: 38861288 PMCID: PMC11376410 DOI: 10.1080/14796694.2024.2340959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/05/2024] [Indexed: 06/12/2024] Open
Abstract
Biliary tract cancer (BTC) is a rare cancer with poor prognosis, characterized by considerable pathophysiological and molecular heterogeneity. While this makes it difficult to treat, it also provides targeted therapy opportunities. Current standard-of-care is chemotherapy ± immunotherapy, but several targeted agents have recently been approved. The current investigational landscape in BTC emphasizes the importance of biomarker testing at diagnosis. MDM2/MDMX are important negative regulators of the tumor suppressor p53 and provide an additional target in BTC (∼5-8% of tumors are MDM2-amplified). Brigimadlin (BI 907828) is a highly potent MDM2-p53 antagonist that has shown antitumor activity in preclinical studies and promising results in early clinical trials; enrollment is ongoing in a potential registrational trial for patients with BTC.
Collapse
Affiliation(s)
- Rachna T Shroff
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA
| | - Melinda Bachini
- Cholangiocarcinoma Foundation, 5526 West 13400 South, #510, Herriman, UT USA
| |
Collapse
|
33
|
Ferrari G, Del Rio B, Novello S, Passiglia F. HER2-Altered Non-Small Cell Lung Cancer: A Journey from Current Approaches to Emerging Strategies. Cancers (Basel) 2024; 16:2018. [PMID: 38893138 PMCID: PMC11171190 DOI: 10.3390/cancers16112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
For patients diagnosed with advanced HER2-altered non-small cell lung cancer (NSCLC), the current standard of care is represented by a platinum-pemetrexed-based chemotherapy, eventually in combination with immunotherapy. Different pan-HER tyrosine kinase inhibitors have been evaluated in limited phase II trials, yielding generally unsatisfactory outcomes, although certain genotypes demonstrated some clinical benefit. Conversely, antibody-drug conjugates (ADCs) targeting HER2, particularly trastuzumab-deruxtecan, have shown promising results against HER2-mutant disease, including a great intracranial activity in patients with brain metastasis. Based on the results obtained from DESTINY-Lung01 and DESTINY-Lung02 trials, trastuzumab deruxtecan received regulatory approval as the first targeted therapy for pre-treated, HER2-mutant, advanced NSCLC patients. More recently, the Food and Drug Administration (FDA) granted the accelerated approval of trastuzumab deruxtecan for advanced, pre-treated HER2-positive solid tumours with no other treatment options. In this scenario, emerging evidence is increasingly pointing towards the exploration of combination regimens with synergistic effects in the advanced disease. In this review, we provide a detailed summary of current approaches and emerging strategies in the management of HER2-altered NSCLC, also focusing on unmet needs, including the treatment of patients with brain metastases.
Collapse
Affiliation(s)
| | | | | | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (G.F.); (B.D.R.); (S.N.)
| |
Collapse
|
34
|
Gou Q, Gou Q, Gan X, Xie Y. Novel therapeutic strategies for rare mutations in non-small cell lung cancer. Sci Rep 2024; 14:10317. [PMID: 38705930 PMCID: PMC11070427 DOI: 10.1038/s41598-024-61087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 05/07/2024] Open
Abstract
Lung cancer is still the leading cause of cancer-related mortality. Over the past two decades, the management of non-small cell lung cancer (NSCLC) has undergone a significant revolution. Since the first identification of activating mutations in the epidermal growth factor receptor (EGFR) gene in 2004, several genetic aberrations, such as anaplastic lymphoma kinase rearrangements (ALK), neurotrophic tropomyosin receptor kinase (NTRK) and hepatocyte growth factor receptor (MET), have been found. With the development of gene sequencing technology, the development of targeted drugs for rare mutations, such as multikinase inhibitors, has provided new strategies for treating lung cancer patients with rare mutations. Patients who harbor this type of oncologic driver might acquire a greater survival benefit from the use of targeted therapy than from the use of chemotherapy and immunotherapy. To date, more new agents and regimens can achieve satisfactory results in patients with NSCLC. In this review, we focus on recent advances and highlight the new approval of molecular targeted therapy for NSCLC patients with rare oncologic drivers.
Collapse
Affiliation(s)
- Qitao Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaochuan Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Xie
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
36
|
Akers KG, Oskar S, Zhao B, Frederickson AM, Arunachalam A. Clinical Outcomes of PD-1/PD-L1 Inhibitors Among Patients With Advanced or Metastatic Non-Small Cell Lung Cancer With BRAF, ERBB2/HER2, MET , or RET Alterations: A Systematic Literature Review. J Immunother 2024; 47:128-138. [PMID: 38112201 PMCID: PMC10984634 DOI: 10.1097/cji.0000000000000500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
The therapeutic landscape for patients with advanced or metastatic non-small cell lung cancer (NSCLC) is rapidly evolving due to advances in molecular testing and the development of new targeted therapies and immunotherapies. However, the efficacy of programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors in advanced or metastatic patients with NSCLC whose tumors harbor BRAF V600E mutation, HER2/ERBB2 alteration, MET exon 14 skipping mutation, or RET rearrangement is not completely understood. A systematic literature review was performed to summarize evidence from clinical trials and observational studies on objective response rate, progression-free survival, and overall survival in patients whose tumors express these biomarkers and who were treated with PD-1/PD-L1 inhibitors. Searches of Embase, MEDLINE, conference abstracts, and a clinical trial registry identified a total of 12 unique studies: 4 studies included patients with BRAF V600E mutation, 6 studies included patients with HER2/ERBB2 alteration, 7 studies included patients with MET exon 14 skipping mutation, and 5 studies included patients with RET rearrangement. Across studies, there was heterogeneity in treatment and patient characteristics and a lack of reporting on many important predictive and prognostic factors, including treatment regimens, patients' line of therapy, and tumor PD-L1 expression, which may explain the wide variation in objective response rate, progression-free survival, and overall survival across studies. Therefore, additional studies prospectively evaluating clinical outcomes of PD-1/PD-L1 inhibitors among patients with advanced or metastatic NSCLC whose tumors harbor emerging predictive or prognostic biomarkers are needed to determine whether this class of immunotherapy can provide additional survival benefits for these patients.
Collapse
Affiliation(s)
| | - Sabine Oskar
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Rahway, NJ
| | - Bin Zhao
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Rahway, NJ
| | | | - Ashwini Arunachalam
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Rahway, NJ
| |
Collapse
|
37
|
Zhao S, Qiu Y, Yuan M, Wang Z. Progress of PD-1/PD-L1 inhibitor combination therapy in immune treatment for HER2-positive tumors. Eur J Clin Pharmacol 2024; 80:625-638. [PMID: 38342825 DOI: 10.1007/s00228-024-03644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Patients with HER2-positive cancers often face a poor prognosis, and treatment regimens containing anti-HER2 have become the first-line treatment options for breast and gastric cancers. However, these approaches are faced with significant challenges in terms of drug resistance. Hence, it is crucial to explore precise treatment strategies aimed at improving survival outcomes. ADVANCEMENTS IN TREATMENT Over the past few years, there has been rapid advancement in the realm of tumor therapy, particularly with the swift progress of immune checkpoint inhibitors, including PD-1/PD-L1 inhibitors. They exert anti-tumor effects by disrupting immune-suppressive factors within the tumor microenvironment. However, monotherapy with PD-1/PD-L1 inhibitors has several limitations. Consequently, numerous studies have explored combinatorial immunotherapeutic strategies and demonstrated highly promising avenues of development. OBJECTIVE This article aims to review the clinical trials investigating PD-1/PD-L1 inhibitor combination therapy for HER2-positive tumors. Additionally, it provides a summary of ongoing trials evaluating the efficacy and safety of these combined treatments, with the intention of furnishing valuable insights for the clinical management of HER2-positive cancer. CONCLUSION Combinatorial immunotherapeutic strategies involving PD-1/PD-L1 inhibitors hold considerable promise in the treatment of HER2-positive tumors. Continued research efforts and clinical trials are warranted to elucidate optimal treatment regimens that maximize therapeutic benefits while minimizing adverse effects.
Collapse
Affiliation(s)
- Sining Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiwu Qiu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqin Yuan
- Department of Colorectal Medicine, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zeng Wang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China, 310022.
| |
Collapse
|
38
|
Yang L, Li Y, Du Y, Guo Y, Guo Z, Liu B, Liu J, Liu Y, Niu H, Sun Y, Yan H, Yang Y, Yu S, Zhang Y, Zhang Y, Zheng K, Zheng N, Zhang X, Zhang Q, Hu L. Discovery of Novel 5,6-Dihydro-4 H-pyrido[2,3,4- de]quinazoline Irreversible Inhibitors Targeting Both Wild-Type and A775_G776insYVMA Mutated HER2 Kinases. J Med Chem 2024; 67:5662-5682. [PMID: 38518121 DOI: 10.1021/acs.jmedchem.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
HER2 mutations were seen in 4% of non-small-cell lung cancer (NSCLC) patients. Most of these mutations (90%) occur as an insertion mutation within the exon 20 frame, leading to the downstream activation of the PI3K-AKT and RAS/MAPK pathways. However, no targeted therapies have yet been approved worldwide. Here a novel series of highly potent HER2 inhibitors with a pyrido[2,3,4-de]quinazoline core were designed and developed. The derivatives with the pyrido[2,3,4-de]quinazoline core displayed superior efficacy of antiproliferation in BaF3 cells harboring HER2insYVMA mutation compared with afatinib and neratinib. Rat studies showed that 8a and 9a with the newly developed core have good pharmacokinetic properties with an oral bioavailability of 41.7 and 42.0%, respectively. Oral administration of 4a and 10e (30 mg/kg, QD) displayed significant antitumor efficacy in an in vivo xenograft model. We proposed promising strategies for the development of HER2insYVMA mutant inhibitors in this study.
Collapse
Affiliation(s)
- Leifu Yang
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yaxin Li
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yunling Du
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yan Guo
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Zhenke Guo
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Baoxiu Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Jianglin Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yanfei Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Hongdan Niu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yueming Sun
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Henglin Yan
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yajuan Yang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Shannan Yu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yifan Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yuan Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Kun Zheng
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Nanqiao Zheng
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Xiaoqing Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Qiang Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Liming Hu
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- . Beijing Key Laboratory of Environmental and Viral Oncology, Beijing 100124, China
| |
Collapse
|
39
|
Chen X, Zeng C. Pioneering the Way: The Revolutionary Potential of Antibody-Drug Conjugates in NSCLC. Curr Treat Options Oncol 2024; 25:556-584. [PMID: 38520605 DOI: 10.1007/s11864-024-01196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
OPINION STATEMENT Despite targeted therapy and immunotherapy being recognized as established frontline treatments for advanced non-small cell lung cancer (NSCLC), the unavoidable development of resistance and disease progression poses ongoing challenges. Antibody-drug conjugates (ADCs) offer a potent treatment option for NSCLC through the specific delivery of cytotoxic agents to tumor cells that display distinct antigens. This review delves into the latest evidence regarding promising ADC agents for NSCLC, focusing on their targets, effectiveness, and safety assessments. Additionally, our study provides insights into managing toxicities, identifying biomarkers, devising methods to counter resistance mechanisms, tackling prevailing challenges, and outlining prospects for the clinical implementation of these innovative ADCs and combination regimens in NSCLC.
Collapse
Affiliation(s)
- Xiehui Chen
- Department of Geriatric Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| |
Collapse
|
40
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
41
|
Zhu K, Yang X, Tai H, Zhong X, Luo T, Zheng H. HER2-targeted therapies in cancer: a systematic review. Biomark Res 2024; 12:16. [PMID: 38308374 PMCID: PMC10835834 DOI: 10.1186/s40364-024-00565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Abnormal alterations in human epidermal growth factor receptor 2 (HER2, neu, and erbB2) are associated with the development of many tumors. It is currently a crucial treatment for multiple cancers. Advanced in molecular biology and further exploration of the HER2-mediated pathway have promoted the development of medicine design and combination drug regimens. An increasing number of HER2-targeted drugs including specific monoclonal antibodies, tyrosine kinase inhibitors (TKIs), and antibody-drug conjugates (ADCs) have been approved by the U.S. Food and Drug Administration. The emergence of ADCs, has significantly transformed the treatment landscape for various tumors, such as breast, gastric, and bladder cancer. Classic monoclonal antibodies and novel TKIs have not only demonstrated remarkable efficacy, but also expanded their indications, with ADCs in particular exhibiting profound clinical applications. Moreover the concept of low HER2 expression signifies a breakthrough in HER2-targeted therapy, indicating that an increasing number of tumors and patients will benefit from this approach. This article, provides a comprehensive review of the underlying mechanism of action, representative drugs, corresponding clinical trials, recent advancements, and future research directions pertaining to HER2-targeted therapy.
Collapse
Affiliation(s)
- Kunrui Zhu
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyi Yang
- College of Clinical Medical, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Hebei Tai
- College of Clinical Medical, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Xiaorong Zhong
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Luo
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Zheng
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
42
|
McMahon DJ, McLaughlin R, Naidoo J. Is Immunotherapy Beneficial in Patients with Oncogene-Addicted Non-Small Cell Lung Cancers? A Narrative Review. Cancers (Basel) 2024; 16:527. [PMID: 38339280 PMCID: PMC10854575 DOI: 10.3390/cancers16030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 20 years, there has been a paradigm shift in the care of patients with non-small cell lung cancer (NSCLC), who now have a range of systemic treatment options including targeted therapy, chemotherapy, immunotherapy (ICI), and antibody-drug conjugates (ADCs). A proportion of these cancers have single identifiable alterations in oncogenes that drive their proliferation and cancer progression, known as "oncogene-addiction". These "driver alterations" are identified in approximately two thirds of patients with lung adenocarcinomas, via next generation sequencing or other orthogonal tests. It was noted in the early clinical development of ICIs that patients with oncogene-addicted NSCLC may have differential responses to ICI. The toxicity signal for patients with oncogene-addicted NSCLC when treated with ICIs also seemed to differ depending on the alteration present and the specific targeted agent used. Developing a greater understanding of the underlying reasons for these clinical observations has become an important area of research in NSCLC. In this review, we analyze the efficacy and safety of ICI according to specific mutations, and consider possible future directions to mitigate safety concerns and improve the outcomes for patients with oncogene-addicted NSCLC.
Collapse
Affiliation(s)
- David John McMahon
- Trinity St James’s Cancer Institute, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
| | | | - Jarushka Naidoo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Beaumont RCSI Cancer Centre, D09 V2NO Dublin, Ireland
- RCSI University of Health Sciences, D02 YN77 Dublin, Ireland
- Beaumont Hospital, D09 Y177 Dublin, Ireland
| |
Collapse
|
43
|
Sharma S, Sarkar O, Ghosh R. Exploring the Role of Unconventional Post-Translational Modifications in Cancer Diagnostics and Therapy. Curr Protein Pept Sci 2024; 25:780-796. [PMID: 38910429 DOI: 10.2174/0113892037274615240528113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024]
Abstract
Unconventional Post-Translational Modifications (PTMs) have gained increasing attention as crucial players in cancer development and progression. Understanding the role of unconventional PTMs in cancer has the potential to revolutionize cancer diagnosis, prognosis, and therapeutic interventions. These modifications, which include O-GlcNAcylation, glutathionylation, crotonylation, including hundreds of others, have been implicated in the dysregulation of critical cellular processes and signaling pathways in cancer cells. This review paper aims to provide a comprehensive analysis of unconventional PTMs in cancer as diagnostic markers and therapeutic targets. The paper includes reviewing the current knowledge on the functional significance of various conventional and unconventional PTMs in cancer biology. Furthermore, the paper highlights the advancements in analytical techniques, such as biochemical analyses, mass spectrometry and bioinformatic tools etc., that have enabled the detection and characterization of unconventional PTMs in cancer. These techniques have contributed to the identification of specific PTMs associated with cancer subtypes. The potential use of Unconventional PTMs as biomarkers will further help in better diagnosis and aid in discovering potent therapeutics. The knowledge about the role of Unconventional PTMs in a vast and rapidly expanding field will help in detection and targeted therapy of cancer.
Collapse
Affiliation(s)
- Sayan Sharma
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| | - Oindrila Sarkar
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| | - Rajgourab Ghosh
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| |
Collapse
|
44
|
Yatabe Y. Molecular pathology of non-small cell carcinoma. Histopathology 2024; 84:50-66. [PMID: 37936491 DOI: 10.1111/his.15080] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Currently, lung cancer is treated by the highest number of therapeutic options and the benefits are based on multiple large-scale sequencing studies, translational research and new drug development, which has promoted our understanding of the molecular pathology of lung cancer. According to the driver alterations, different characteristics have been revealed, such as differences in ethnic prevalence, median age and alteration patterns. Consequently, beyond traditional chemoradiotherapy, molecular-targeted therapy and treatment with immune check-point inhibitors (ICI) also became available major therapeutic options. Interestingly, clinical results suggest that the recently established therapies target distinct lung cancer proportions, particularly between the EGFR/ALK and PD-1/PD-L1-positive subsets, e.g. the kinase inhibitors target driver mutation-positive tumours, whereas driver mutation-negative tumours respond to ICI treatment. These therapeutic efficacy-related differences might be explained by the molecular pathogenesis of lung cancer. Addictive driver mutations promote tumour formation with powerful transformation performance, resulting in a low tumour mutation burden, reduced immune surveillance, and subsequent poor response to ICIs. In contrast, regular tobacco smoke exposure repeatedly injures the proximal airway epithelium, leading to accumulated genetic alterations. In the latter pathway, overgrowth due to alteration and immunological exclusion against neoantigens is initially balanced. However, tumours could be generated from certain clones that outcompete immunological exclusion and outgrow the others. Consequently, this cancer type responds to immune check-point treatment. These pathogenic differences are explained well by the two-compartment model, focusing upon the anatomical and functional composition of distinct cellular components between the terminal respiratory unit and the air-conducting system.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
45
|
Salmani-Javan E, Farhoudi Sefidan Jadid M, Zarghami N. Recent advances in molecular targeted therapy of lung cancer: Possible application in translation medicine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:122-133. [PMID: 38234663 PMCID: PMC10790298 DOI: 10.22038/ijbms.2023.72407.15749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 01/19/2024]
Abstract
Lung cancer is one of the leading causes of death among all cancer deaths. This cancer is classified into two different histological subtypes: non-small cell lung cancer (NSCLC), which is the most common subtype, and small cell lung cancer (SCLC), which is the most aggressive subtype. Understanding the molecular characteristics of lung cancer has expanded our knowledge of the cellular origins and molecular pathways affected by each of these subtypes and has contributed to the development of new therapies. Traditional treatments for lung cancer include surgery, chemotherapy, and radiotherapy. Advances in understanding the nature and specificity of lung cancer have led to the development of immunotherapy, which is the newest and most specialized treatment in the treatment of lung cancer. Each of these treatments has advantages and disadvantages and causes side effects. Today, combination therapy for lung cancer reduces side effects and increases the speed of recovery. Despite the significant progress that has been made in the treatment of lung cancer in the last decade, further research into new drugs and combination therapies is needed to extend the clinical benefits and improve outcomes in lung cancer. In this review article, we discussed common lung cancer treatments and their combinations from the most advanced to the newest.
Collapse
Affiliation(s)
- Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi Sefidan Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
46
|
Loeffler E, Ancel J, Dalstein V, Deslée G, Polette M, Nawrocki-Raby B. HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies. Life (Basel) 2023; 14:64. [PMID: 38255679 PMCID: PMC10820545 DOI: 10.3390/life14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Lung cancer stands as the first cause of death by cancer in the world. Despite the improvement in patients' outcomes in the past decades through the development of personalized medicine approaches, a substantial portion of patients remains ineligible for targeted therapies due to the lack of a "druggable" molecular target. HER2, a receptor tyrosine kinase member of the EGFR/ErbB family, is known to show oncogenic properties. In this review, we focus on the different HER2 dysregulation mechanisms that have been observed in non-small cell lung cancer (NSCLC): gene mutation, gene amplification, protein overexpression and protein hyper-phosphorylation, the latter suggesting that HER2 dysregulation can occur independently of any molecular aberration. These HER2 alterations inevitably have consequences on tumor biology. Here, we discuss how they are not only involved in abnormal proliferation and survival of cancer cells but also potentially in increased angiogenic properties, mesenchymal features and tumor immune escape. Finally, we review the impact of these HER2 alterations in various therapeutic approaches. While standard chemotherapy and groundbreaking immunotherapy seem rather ineffective for HER2-altered NSCLCs, the development of HER2-targeted therapies such as tyrosine kinase inhibitors, anti-HER2 antibodies and especially antibody-drug conjugates could provide new hopes for patients.
Collapse
Affiliation(s)
- Emma Loeffler
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| | - Julien Ancel
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Véronique Dalstein
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Myriam Polette
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Béatrice Nawrocki-Raby
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| |
Collapse
|
47
|
Nützinger J, Bum Lee J, Li Low J, Ling Chia P, Talisa Wijaya S, Chul Cho B, Min Lim S, Soo RA. Management of HER2 alterations in non-small cell lung cancer - The past, present, and future. Lung Cancer 2023; 186:107385. [PMID: 37813015 DOI: 10.1016/j.lungcan.2023.107385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
HER2 mutations, which account for 2-4% of non-small cell lung cancer (NSCLC), are distinct molecular alterations identified via next generation sequencing (NGS). Previously, treatment outcomes in HER2-mutant metastatic NSCLC were dismal, showing limited clinical benefit with platinum-based chemotherapy with or without immunotherapy. In contrast to HER2-altered breast and gastric cancer, HER2-mutant NSCLC does not benefit from HER2 targeting agents such as trastuzumab or TDM1. HER2 mutations are also inherently different from HER2 overexpression and amplification. Currently, trastuzumab deruxtecan, a HER2 targeting antibody drug conjugate (ADC) is the first and only approved treatment option for patients with HER2-mutant metastatic NSCLC after failure with standard treatment. In this review, we summarized the biology of HER2 and detection of HER2 overexpression, amplification and mutations, as well as general landscape of landmark and ongoing clinical trials encompassing from chemotherapy to targeted agents, including tyrosine kinase inhibitors (TKIs), ADCs and investigational agents.
Collapse
Affiliation(s)
- Jorn Nützinger
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jia Li Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore
| | | | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| |
Collapse
|
48
|
Vakkalagadda CV, Patel JD. Addition of Trastuzumab Deruxtecan to Selpercatinib in a Patient With RET Fusion-Driven NSCLC and an Acquired HER2 Amplification: Case Report. JTO Clin Res Rep 2023; 4:100603. [PMID: 38144396 PMCID: PMC10746506 DOI: 10.1016/j.jtocrr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Despite the high activity of selective RET inhibitors in RET-driven NSCLC, resistance eventually develops and there is unmet need to better define therapeutic options for patients. This is a case of a patient initially thought to have no targetable alterations, then found to have a RET fusion, and subsequently HER2 amplification on three distinct biopsies. She was treated initially with chemotherapy and immune therapy, then switched to selpercatinib, and eventually had fam-trastuzumab deruxtecan added to selpercatinib. She also developed neuroendocrine differentiation at time of progression in the context of a p53 mutation, which is a known factor that can lead to small cell transformation. This patient's case highlights the need for comprehensive molecular testing at both diagnosis and progression, as unexpected resistance mechanisms may be identified particularly for patients with uncommon driver mutations.
Collapse
Affiliation(s)
- Chetan V. Vakkalagadda
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, Chicago, Illinois
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jyoti D. Patel
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
49
|
Neupane N, Thapa S, Bhattarai A, Ahuja K, Schlam I, Mittal A, Tolaney SM, Tarantino P. Opportunities and Challenges for a Histology-Agnostic Utilization of Trastuzumab Deruxtecan. Curr Oncol Rep 2023; 25:1467-1482. [PMID: 37938529 DOI: 10.1007/s11912-023-01469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE OF REVIEW This review delves into the prospects and challenges offered by a potential pan-histological utilization of trastuzumab deruxtecan (T-DXd) in patients with advanced solid tumors. RECENT FINDINGS The HER2-targeted antibody-drug conjugate (ADC) T-DXd has shown broad activity across cancer types, with current indications for patients with biomarker-selected breast, gastric, and non-small-cell lung cancer and relevant activity observed in multiple histology-specific trials. Moreover, two recently reported phase 2 trials (DESTINY-Pantumor02 and HERALD) have supported the potential for a pan-cancer utilization of this ADC in patients with advanced cancers expressing HER2 or with HER2 amplifications. By improving the delivery of cytotoxic chemotherapy, ADCs have allowed for meaningful clinical advantages in broad populations of cancer patients, often leading to survival advantages over conventional chemotherapy. Notably, the broad spectrum of activity of certain ADCs has led to the hypothesis of a histology-agnostic utilization based on detecting specific biomarkers, similar to what is already established for certain targeted treatments and immunotherapy. To date, T-DXd has shown the broadest activity across cancer types, with current approvals in breast, gastric, and lung cancer, and relevant antitumor activity observed in a multiplicity of additional cancer types. The optimization of the drug dose, identification of predictive biomarkers, and clarification of mechanisms of resistance will be critical steps in view of a pan-histological expansion in the use of T-DXd.
Collapse
Affiliation(s)
| | - Sangharsha Thapa
- Westchester Medical Center, New York Medical College, New York, NY, USA
| | - Abhinav Bhattarai
- Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
- Medical Database, Irvine, CA, USA
| | - Kriti Ahuja
- Internal Medicine, John H Stroger Hospital of Cook County, Chicago, IL, USA
| | - Ilana Schlam
- Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Tufts University, Boston, MA, USA
| | - Abhenil Mittal
- Health Sciences North, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Paolo Tarantino
- Breast Oncology Program, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
50
|
Yang Y, Yang G, Li W, Hao X, Zhang S, Ai X, Lei S, Xu H, Wang Y. Pyrotinib plus antiangiogenic agents for HER2-altered advanced non-small cell lung cancer: A retrospective real-world study. Thorac Cancer 2023; 14:3275-3281. [PMID: 37740599 PMCID: PMC10665774 DOI: 10.1111/1759-7714.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Although some targeted therapies have been shown to be effective in treating HER2-altered non-small cell lung cancer (NSCLC), the survival demands have not yet been met due to the high cost and limited availability. This study aimed to assess the effectiveness and safety of pyrotinib plus antiangiogenic agents, including apatinib, anlotinib, and bevacizumab, in previously treated patients with HER2-altered advanced NSCLC. METHODS In this retrospective real-world study, patients with HER2-altered NSCLC who received pyrotinib plus antiangiogenic agents as a second- or later-line treatment between November 2015 and January 2022 were reviewed. The objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and safety profiles of patients were analyzed. RESULTS A total of 107 patients were included in the analysis, of which 59 patients (55.1%) had received at least two lines of prior chemotherapy or tyrosine kinase inhibitors. Most of them (87.9%) were identified as harboring HER2 exon 20 insertions. At the data cutoff date (May 13, 2022), the ORR, DCR, median PFS, and median OS were 19.6% (21/107), 94.4% (101/107), 7.13 months (95% confidence interval [CI]: 6.26-8.01), and 19.50 months (95% CI: 12.83-26.17), respectively. There was no difference in the PFS between patients receiving apatinib or anlotinib/bevacizumab (median PFS, 7.13 vs. 6.27 months, hazard ratio [HR] = 1.49, 95% CI: 0.87-2.54, p = 0.15). The most frequent grade 3 or higher treatment-related adverse events was diarrhea (17.6%), followed by hypertension (11.0%) and nausea (3.3%). No treatment-related death occurred. CONCLUSION In this study, pyrotinib plus antiangiogenic agents demonstrated promising efficacy and were tolerable in HER2-altered NSCLC patients.
Collapse
Affiliation(s)
- Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuyang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Ai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siyu Lei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haiyan Xu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|