1
|
A promising antifibrotic drug, pyridoxamine attenuates thioacetamide-induced liver fibrosis by combating oxidative stress, advanced glycation end products, and balancing matrix metalloproteinases. Eur J Pharmacol 2022; 923:174910. [PMID: 35339478 DOI: 10.1016/j.ejphar.2022.174910] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is a common chronic hepatic disease. This study was done to examine the effect of pyridoxamine against thioacetamide-induced hepatic fibrosis. Animals were divided into four groups (1) control group; (2) Thioacetamide group (200 mg/kg, i.p.) twice a week for eight weeks; (3) Pyridoxamine-treated group treated with pyridoxamine (100 mg/kg/day, i.p.) for eight weeks; (4) Thioacetamide and pyridoxamine group, in which pyridoxamine was given (100 mg/kg/day, i.p.) during thioacetamide injections. Thioacetamide treatment resulted in hepatic dysfunction manifested by increased serum levels of bilirubin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Oxidative stress was noted by increased hepatic lipid peroxidation and decreased glutathione (GSH). Increased concentrations of total nitrite/nitrate, advanced glycation end products (AGEs), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), matrix metalloproteinases (MMP-2&9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were noticed in hepatic tissues. Immunostaining sections also revealed overexpression of MMP-2, MMP-9 and collagen IV. Liver fibrosis was confirmed by severe histopathological changes. Pyridoxamine improved the assessed parameters. Moreover, histopathological and immunohistological studies supported the ability of pyridoxamine to reduce liver fibrosis. The findings of the present study provide evidence that pyridoxamine is a novel target for the treatment of liver fibrosis.
Collapse
|
2
|
Velásquez M, Méndez D, Moneriz C. Pyridoxine Decreases Oxidative Stress on Human Erythrocyte Membrane Protein in vitro. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Pyridoxine has reduction and prevention against the levels of reactive oxygen species in in vitro studies. However, the biochemical mechanism that explains this behavior has not yet been fully clarified.
Objective:
To evaluate the effect of pyridoxine against oxidative damage on the membrane of human erythrocytes.
Methods:
Cumene hydroperoxide was used to induce oxidative stress in protein and lipid. Human erythrocytes were incubated with pyridoxine and cumene hydroperoxide, either alone or together for 8 h. Oxidative damage was determined by measuring lipid peroxidation and membrane protein carbonylation.
Results:
The results indicate that the malondialdehyde concentration decreased with increasing concentration of pyridoxine. The membrane protein content also decreased with increasing concentration of vitamin B6, which was confirmed by the decreased signal intensity in the western blot when compared to control without pyridoxine. Results demonstrate that pyridoxine can significantly decrease lipid peroxidation and protein carbonylation in red cell membrane exposed to high concentrations of oxidant agent.
Conclusion:
Pyridoxine showed a protective effect against the oxidative stress in human erythrocytes in vitro, inhibiting the carbonylation and the oxidative damage of erythrocyte membrane proteins. To date, such an effect has not yet been reported in terms of protein oxidation.
Collapse
|
3
|
Tejpal CS, Chatterjee NS, Elavarasan K, Lekshmi RGK, Anandan R, Asha KK, Ganesan B, Mathew S, Ravishankar CN. Dietary supplementation of thiamine and pyridoxine-loaded vanillic acid-grafted chitosan microspheres enhances growth performance, metabolic and immune responses in experimental rats. Int J Biol Macromol 2017; 104:1874-1881. [PMID: 28342754 DOI: 10.1016/j.ijbiomac.2017.03.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
In the present investigation, the effect of dietary supplementation of thiamine and pyridoxine loaded vanillic acid-grafted chitosan microspheres (TPVGC) on growth, metabolic and immune responses in Wistar strain albino rats was studied. Eight experimental groups, namely four groups each for male and female rats were fed with 0, 0.4, 0.8 and 1.6% of TPVGC in the diet. At the end of 45days feeding trials, both male and female rats supplemented with TPVGC had higher weight gain% and specific growth rate than the control groups. Significantly (p<0.05) lower blood glucose level and higher respiratory burst activity were recorded in the treatment groups than the control groups of both male and female rats. Activity of metabolic enzymes (aspartate amino transferase, alanine aminotransferase, alkaline phosphatase and acid phosphatase) and antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly higher (p<0.05) in the control groups and a decreasing trend in the same was observed with a gradual increase in the inclusion level of TPVGC in the diet of the treatment groups. However, a reverse trend was observed for acetylcholine esterase. It was inferred that dietary supplementation of thiamine and pyridoxine loaded vanillic acid-grafted chitosan enhanced the growth performance, metabolic and immune responses in the animal-model.
Collapse
Affiliation(s)
- C S Tejpal
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India.
| | - N S Chatterjee
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - K Elavarasan
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - R G K Lekshmi
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - R Anandan
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - K K Asha
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - B Ganesan
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - S Mathew
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - C N Ravishankar
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| |
Collapse
|
4
|
Paul A, Das J, Das S, Samadder A, Khuda-Bukhsh AR. Poly (lactide-co-glycolide) nano-encapsulation of chelidonine, an active bioingredient of greater celandine (Chelidonium majus), enhances its ameliorative potential against cadmium induced oxidative stress and hepatic injury in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:937-947. [PMID: 24035924 DOI: 10.1016/j.etap.2013.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/12/2013] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
This study evaluates the possible protective potentials of chelidonine and its poly lactide-co-glycolide (PLGA) encapsulated nano-form against cadmium chloride (CdCl₂) induced oxidative stress and hepatotoxicity in mice, ex vivo and in vivo. Acute exposure to CdCl₂ (1.0 mg/kg b.w; i.p., twice a week for 30 days) generated oxidative stress in mice through accumulation of reactive oxygen species and increased lipid peroxidation, and levels of certain liver marker enzymes (ALT, AST, ALP) with decrease in levels of GSH and certain other antioxidant enzymes (SOD, CAT, GR) in liver. Treatment with nano-chelidonine for 30 days after CdCl₂ intoxication significantly reduced oxidative stress and lipid peroxidation and restored levels of GSH, cholesterol, triglyceride and antioxidant enzymes, showing ameliorative changes in histopathology of liver. Expression pattern of certain inflammatory and apoptotic signal proteins also indicated better hepato-protective abilities of nano-chelidonine, making it a more suitable protective drug than chelidonine against cadmium toxicity in mice.
Collapse
Affiliation(s)
- Avijit Paul
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, India
| | | | | | | | | |
Collapse
|
5
|
D’Agostini F, Fiallo P, Ghio M, De Flora S. Chemoprevention of doxorubicin-induced alopecia in mice by dietary administration of l-cystine and vitamin B6. Arch Dermatol Res 2012; 305:25-34. [DOI: 10.1007/s00403-012-1253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
|
6
|
Govil N, Chaudhary S, Waseem M, Parvez S. Postnuclear supernatant: an in vitro model for assessing cadmium-induced neurotoxicity. Biol Trace Elem Res 2012; 146:402-9. [PMID: 22101474 DOI: 10.1007/s12011-011-9263-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/03/2011] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal commonly found in industrial workplaces, a food contaminant and a major constituent of cigarette smoke. Most of the organs are susceptible to Cd-induced toxicity, including brain. Postnuclear supernatant (PNS) has been accepted as an in vitro model for assessing xenobiotic induced toxicity. The goal of the present study was to validate PNS as an in vitro model for investigating the effect of Cd-induced neurotoxicity. Neurotoxic induction by Cd was established in a dose-dependent manner in PNS in vitro. Enzymatic and non-enzymatic antioxidants were used as biomarkers of exposure. Antioxidant enzymatic activity was measured as a significant increase in activities of catalase, superoxide dismutase, and glutathione S-transferase. On exposure to Cd, a significant increase in acetylcholinesterase and decrease in sodium-potassium ATPase activity was also observed. Non-enzymatic effect was also demonstrated as a significant elevation in reduced glutathione and non-protein thiol activity, but there was no significant increase or decrease in the concentrations of protein thiol. In accordance with the toxicity of Cd towards the studied brain structure, Cd-induced oxidative stress has been a focus of toxicological research as a possible mechanism of neurotoxicity. Our results suggest that PNS preparations can be used as a model for future investigation of xenobiotic-induced neurotoxicity under in vitro conditions.
Collapse
Affiliation(s)
- Namrata Govil
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | | | | | | |
Collapse
|
7
|
Zafeer MF, Waseem M, Chaudhary S, Parvez S. Cadmium-induced hepatotoxicity and its abrogation by thymoquinone. J Biochem Mol Toxicol 2012; 26:199-205. [DOI: 10.1002/jbt.21402] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/18/2011] [Accepted: 12/04/2011] [Indexed: 12/22/2022]
|
8
|
Matović V, Buha A, Bulat Z, Đukić-Ćosić D, Miljković M, Ivanišević J, Kotur-Stevuljević J. Route-dependent effects of cadmium/cadmium and magnesium acute treatment on parameters of oxidative stress in rat liver. Food Chem Toxicol 2012; 50:552-7. [DOI: 10.1016/j.fct.2011.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/23/2011] [Accepted: 12/24/2011] [Indexed: 12/11/2022]
|