1
|
Pinto MB, Pires PC, Calhelha RC, Silva AR, Sousa MJ, Vilas-Boas M, Falcão SI, Veiga F, Makvandi P, Paiva-Santos AC. Bee Venom-Loaded Niosomes as Innovative Platforms for Cancer Treatment: Development and Therapeutical Efficacy and Safety Evaluation. Pharmaceuticals (Basel) 2024; 17:572. [PMID: 38794142 PMCID: PMC11123916 DOI: 10.3390/ph17050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Despite past efforts towards therapeutical innovation, cancer remains a highly incident and lethal disease, with current treatments lacking efficiency and leading to severe side effects. Hence, it is imperative to develop new, more efficient, and safer therapies. Bee venom has proven to have multiple and synergistic bioactivities, including antitumor effects. Nevertheless, some toxic effects have been associated with its administration. To tackle these issues, in this work, bee venom-loaded niosomes were developed, for cancer treatment. The vesicles had a small (150 nm) and homogeneous (polydispersity index of 0.162) particle size, and revealed good therapeutic efficacy in in vitro gastric, colorectal, breast, lung, and cervical cancer models (inhibitory concentrations between 12.37 ng/mL and 14.72 ng/mL). Additionally, they also revealed substantial anti-inflammatory activity (inhibitory concentration of 28.98 ng/mL), effects complementary to direct antitumor activity. Niosome safety was also assessed, both in vitro (skin, liver, and kidney cells) and ex vivo (hen's egg chorioallantoic membrane), and results showed that compound encapsulation increased its safety. Hence, small, and homogeneous bee venom-loaded niosomes were successfully developed, with substantial anticancer and anti-inflammatory effects, making them potentially promising primary or adjuvant cancer therapies. Future research should focus on evaluating the potential of the developed platform in in vivo models.
Collapse
Affiliation(s)
- Maria Beatriz Pinto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal (M.V.-B.); (S.I.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Rita Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal (M.V.-B.); (S.I.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria João Sousa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal (M.V.-B.); (S.I.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal (M.V.-B.); (S.I.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Soraia I. Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal (M.V.-B.); (S.I.F.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou 324000, China
- Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Todorova T, Boyadzhiev K, Dimitrov M, Parvanova P. Bee venom genotoxicity on Saccharomyces cerevisiae cells - The role of mitochondria and YAP1 transcription factor. Toxicology 2024; 503:153768. [PMID: 38442839 DOI: 10.1016/j.tox.2024.153768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
The present work aims to clarify the genotype differences of a model organism Saccharomyces cerevisiae in response to bee venom. The study evaluated various endpoints including cell survival, induction of physiologically active superoxide anions, mitotic gene conversion, mitotic crossing-over, reverse mutations, DNA double-strand breaks, and Ty1 retrotransposition. The role of the intact mitochondria and the YAP1 transcription factor was also evaluated. Our results indicate a genotype-specific response. The first experimental evidence has been provided that bee venom induces physiologically active superoxide anions and DNA double-strand breaks in S. cerevisiae. The lack of oxidative phosphorylation due to disrupted or missing mitochondrial DNA reduces but not diminishes the cytotoxicity of bee venom. The possible modes of action could be considered direct damage to membranes (cytotoxic effect) and indirect damage to DNA through oxidative stress (genotoxic effect). YAP1 transcription factor was not found to be directly involved in cell defense against bee venom treatment.
Collapse
Affiliation(s)
- Teodora Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria.
| | - Krassimir Boyadzhiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Martin Dimitrov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Petya Parvanova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| |
Collapse
|
3
|
Isidorov V, Zalewski A, Zambrowski G, Swiecicka I. Chemical Composition and Antimicrobial Properties of Honey Bee Venom. Molecules 2023; 28:molecules28104135. [PMID: 37241876 DOI: 10.3390/molecules28104135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Due to its great medical and pharmaceutical importance, honey bee venom is considered to be well characterized both chemically and in terms of biomedical activity. However, this study shows that our knowledge of the composition and antimicrobial properties of Apis mellifera venom is incomplete. In this work, the composition of volatile and extractive components of dry and fresh bee venom (BV) was determined by GC-MS, as well as antimicrobial activity against seven types of pathogenic microorganisms. One-hundred and forty-nine organic C1-C19 compounds of different classes were found in the volatile secretions of the studied BV samples. One-hundred and fifty-two organic C2-C36 compounds were registered in ether extracts, and 201 compounds were identified in methanol extracts. More than half of these compounds are new to BV. In microbiological tests involving four species of pathogenic Gram-positive and two species of Gram-negative bacteria, as well as one species of pathogenic fungi, the values of the minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) were determined for samples of dry BV, as well as ether and methanol extracts from it. Gram-positive bacteria show the greatest sensitivity to the action of all tested drugs. The minimum MIC values for Gram-positive bacteria in the range of 0.12-7.63 ng mL-1 were recorded for whole BV, while for the methanol extract they were 0.49-125 ng mL-1. The ether extracts had a weaker effect on the tested bacteria (MIC values 31.25-500 ng mL-1). Interestingly, Escherichia coli was more sensitive (MIC 7.63-500 ng mL-1) to the action of bee venom compared to Pseudomonas aeruginosa (MIC ≥ 500 ng mL-1). The results of the tests carried out indicate that the antimicrobial effect of BV is associated with the presence of not only peptides, such as melittin, but also low molecular weight metabolites.
Collapse
Affiliation(s)
- Valery Isidorov
- Institute of Forest Sciences, Bialystok Technical University, 15-351 Bialystok, Poland
| | - Adam Zalewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Grzegorz Zambrowski
- Department of Microbiology, Faculty of Biology, University of Bialystok, 15-328 Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Faculty of Biology, University of Bialystok, 15-328 Bialystok, Poland
- Laboratory of Applied Microbiology, Faculty of Biology, University of Bialystok, 15-328 Bialystok, Poland
| |
Collapse
|
4
|
Mini-αA-Crystallin Stifled Melittin-Induced Haemolysis and Lymphocyte Lysis. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractMelittin, the most potent pharmacological ingredient of honey bee venom, induces haemolysis, lymphocyte lysis, long-term pain, localised inflammation, and hyperalgesia. In this study, efforts were made to subdue the melittin’s ill effects using a chaperone peptide called ‘mini-αA-crystallin’ (MAC) derived from eye lens αA-crystallin. Haemolytic test on human red blood cells, percentage viability, and DNA diffusion assay on Human peripheral blood lymphocytes (HPBLs) were performed with melittin in the presence or absence of MAC. Propidium iodide and Annexin V-FITC dual staining were performed to analyse quantitative levels of necrotic and apoptotic induction by melittin in the presence or absence of MAC on HPBLs using a flow cytometer. A computational study to find out the interactions between MAC and melittin was undertaken by modelling the structure of MAC using a PEP-FOLD server. The result showed that MAC inhibited melittin-induced lysis in nucleated (lymphocytes) and enucleated (RBC) cells. Flow cytometric analysis revealed a substantial increase in the necrotic and late apoptotic cells after treating HPBLs with melittin (4 µg/ml) for 24 h. Treatment with MAC at a 2:1 molar ratio prevented HPBLs from developing melittin-induced necrosis and late apoptosis. In the docking study, hydrogen, van der Waals, π-π stacking, and salt bridges were observed between the MAC and melittin complex, confirming a strong interaction between them. The MAC-melittin complex was stable during molecular dynamics simulation. These findings may be beneficial in developing a medication for treating severe cases of honeybee stings.
Collapse
|
5
|
Sjakste N, Gajski G. A Review on Genotoxic and Genoprotective Effects of Biologically Active Compounds of Animal Origin. Toxins (Basel) 2023; 15:165. [PMID: 36828477 PMCID: PMC9961038 DOI: 10.3390/toxins15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Envenomation by animal venoms remains a serious medical and social problem, especially in tropical countries. On the other hand, animal venoms are widely used as a source of biologically active compounds for the development of novel drugs. Numerous derivatives of animal venoms are already used in clinical practice. When analysing the mechanisms of action of animal venoms, attention is usually focused on the main target of the venom's enzymes and peptides such as neurotoxic, cytotoxic or haemorrhagic effects. In the present review, we would like to draw attention to the "hidden" effects of animal venoms and their derivatives in regard to DNA damage and/or protection against DNA damage. Alkaloids and terpenoids isolated from sponges such as avarol, ingenamine G or variolin B manifest the capability to bind DNA in vitro and produce DNA breaks. Trabectidin, isolated from a sea squirt, also binds and damages DNA. A similar action is possible for peptides isolated from bee and wasp venoms such as mastoparan, melectin and melittin. However, DNA lesions produced by the crude venoms of jellyfish, scorpions, spiders and snakes arise as a consequence of cell membrane damage and the subsequent oxidative stress, whereas certain animal venoms or their components produce a genoprotective effect. Current research data point to the possibility of using animal venoms and their components in the development of various potential therapeutic agents; however, before their possible clinical use the route of injection, molecular target, mechanism of action, exact dosage, possible side effects and other fundamental parameters should be further investigated.
Collapse
Affiliation(s)
- Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
- Genetics and Bioinformatics, Institute of Biology, University of Latvia, 1004 Riga, Latvia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Ullah A, Aldakheel FM, Anjum SI, Raza G, Khan SA, Tlak Gajger I. Pharmacological properties and therapeutic potential of honey bee venom. Saudi Pharm J 2023; 31:96-109. [PMID: 36685303 PMCID: PMC9845117 DOI: 10.1016/j.jsps.2022.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Honey bee venom (BV) is a valuable product, and has a wide range of biological effects, and its use is rapidly increasing in apitherapy. Therefore, the current study, we reviewed the existing knowledge about BV composition and its numerous pharmacological properties for future research and use. Honey bee venom or apitoxin is produced in the venom gland in the honey bee abdomen. Adult bees use it as a primary colony defense mechanism. It is composed of many biologically active substances including peptides, enzymes, amines, amino acids, phospholipids, minerals, carbohydrates as well as some volatile components. Melittin and phospholipase A2 are the most important components of BV, having anti-cancer, antimicrobial, anti-inflammatory, anti-arthritis, anti-nociceptive and other curative potentials. Therefore, in medicine, BV has been used for centuries against different diseases like arthritis, rheumatism, back pain, and various inflammatory infections. Nowadays, BV or its components separately, are used for the treatment of various diseases in different countries as a natural medicine with limited side effects. Consequently, scientists as well as several pharmaceutical companies are trying to get a new understanding about BV, its substances and its activity for more effective use of this natural remedy in modern medicine.
Collapse
Affiliation(s)
- Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Fahad Mohammed Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia,Prince Sattam bin Abdulaziz Research Chair for Epidemiology and Public Health, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan,Corresponding author.
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Institute of Chemical and Pharmaceutical Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Maani Z, Farajnia S, Rahbarnia L, Hosseingholi EZ, Khajehnasiri N, Mansouri P. Rational design of an anti-cancer peptide inhibiting CD147 / Cyp A interaction. J Mol Struct 2023; 1272:134160. [PMID: 36128074 PMCID: PMC9479519 DOI: 10.1016/j.molstruc.2022.134160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
The CD147 / Cyp A interaction is a critical pathway in cancer types and an essential factor in entering the COVID-19 virus into the host cell. Melittin acts as an inhibitory peptide in cancer types by blocking the CD147/ Cyp A interaction. The clinical application of Melittin is limited due to weak penetration into cancer cells. TAT is an arginine-rich peptide with high penetration ability into cells widely used in drug delivery systems. This study aimed to design a hybrid peptide derived from Melittin and TAT to inhibit CD147 /Cyp A interaction. An amino acid region with high anti-cancer activity in Melittin was selected based on the physicochemical properties. Based on the results, a truncated Melittin peptide with 15 amino acids by the GGGS linker was fused to a TAT peptide (nine amino acids) to increase the penetration rate into the cell. A new hybrid peptide analog(TM) was selected by replacing the glycine with serine based on random point mutation. Docking results indicated that the TM peptide acts as an inhibitory peptide with high binding energy when interacting with CD147 and the CypA proteins. RMSD and RMSF results confirmed the high stability of the TM peptide in interaction with CD147. Also, the coarse-grained simulation showed the penetration potential of TM peptide into the DOPS-DOPC model membrane. Our findings indicated that the designed multifunctional peptide could be an attractive therapeutic candidate to halter tumor types and COVID-19 infection.
Collapse
|
8
|
Shi P, Xie S, Yang J, Zhang Y, Han S, Su S, Yao H. Pharmacological effects and mechanisms of bee venom and its main components: Recent progress and perspective. Front Pharmacol 2022; 13:1001553. [PMID: 36238572 PMCID: PMC9553197 DOI: 10.3389/fphar.2022.1001553] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Bee venom (BV), a type of defensive venom, has been confirmed to have favorable activities, such as anti-tumor, neuroprotective, anti-inflammatory, analgesic, anti-infectivity effects, etc. This study reviewed the recent progress on the pharmacological effects and mechanisms of BV and its main components against cancer, neurological disorders, inflammatory diseases, pain, microbial diseases, liver, kidney, lung and muscle injury, and other diseases in literature during the years 2018-2021. The related target proteins of BV and its main components against the diseases include Akt, mTOR, JNK, Wnt-5α, HIF-1α, NF-κB, JAK2, Nrf2, BDNF, Smad2/3, AMPK, and so on, which are referring to PI3K/Akt/mTOR, MAPK, Wnt/β-catenin, HIF-1α, NF-κB, JAK/STAT, Nrf2/HO-1, TrkB/CREB/BDNF, TGF-β/Smad2/3, and AMPK signaling pathways, etc. Further, with the reported targets, the potential effects and mechanisms on diseases were bioinformatically predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease ontology semantic and enrichment (DOSE) and protein-protein interaction (PPI) analyses. This review provides new insights into the therapeutic effects and mechanisms of BV and its main components on diseases.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihui Xie
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiali Yang
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Han
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songkun Su
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
10
|
Senturk A, Dalkiran B, Acikgoz B, Aksu I, Acikgoz O, Kiray M. The effects of bee venom on liver and skeletal muscle in exhaustive swimming rats. Biol Futur 2022; 73:237-244. [PMID: 35291017 DOI: 10.1007/s42977-022-00115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
Oxidative damage and proinflammatory cytokines are involved in exhaustive exercise-induced fatigue. This study aimed to investigate the effects of bee venom, a natural toxin, on fatigue and tissue damage in rats that underwent forced swimming exercise. Rats were divided into four groups: control, swimming exercise (SE), bee venom (BV) and swimming exercise + bee venom (SE + BV). SE and SE + BV groups were subjected to forced swimming (load of 7% body weight) for 5 days. BV and SE + BV groups were injected with 1 mg/kg BV subcutaneously. Swimming time, blood lactate and TNF-α levels, MDA and GSH levels in liver and gastrocnemius muscle were evaluated. Swimming time was shorter in SE + BV group than SE group. There was no difference in lactate levels between SE and SE + BV groups. MDA and GSH levels were increased in SE, BV and SE + BV groups. TNF-α levels were increased in BV group compared to control and SE groups. Our study demonstrated that BV administration before exhaustive exercise in rats did not provide anti-fatigue effect. Additionally, BV did not show anti-inflammatory activity and had different effects on antioxidant capacity at tissue level. Further research might explore the effects of different doses and durations of BV on exhaustive exercise.
Collapse
Affiliation(s)
- Askin Senturk
- Department of Physiology, Medical Faculty, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey
- Graduate School of Health Sciences, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey
| | - Bahar Dalkiran
- Department of Physiology, Medical Faculty, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey
- Graduate School of Health Sciences, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey
| | - Burcu Acikgoz
- Department of Physiology, Medical Faculty, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey
- Graduate School of Health Sciences, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey
| | - Ilkay Aksu
- Department of Physiology, Medical Faculty, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey
| | - Osman Acikgoz
- Department of Physiology, Medical Faculty, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey
| | - Muge Kiray
- Department of Physiology, Medical Faculty, Dokuz Eylul University, Balcova, Izmir, 35330, Turkey.
| |
Collapse
|
11
|
Varol A, Sezen S, Evcimen D, Zarepour A, Ulus G, Zarrabi A, Badr G, Daştan SD, Orbayoğlu AG, Selamoğlu Z, Varol M. Cellular targets and molecular activity mechanisms of bee venom in cancer: recent trends and developments. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2024576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Serap Sezen
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey
| | - Dilhan Evcimen
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Gönül Ulus
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Gamal Badr
- Department of Zoology, Faculty of Science, Laboratory of Immunology, Assiut University, Assiut, Egypt
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Asya Gülistan Orbayoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| | - Zeliha Selamoğlu
- Department Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
12
|
Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis mellifera intermissa. Antibiotics (Basel) 2021; 10:antibiotics10121514. [PMID: 34943726 PMCID: PMC8698958 DOI: 10.3390/antibiotics10121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
The venom from Apis mellifera intermissa, the main honey bee prevailing in Morocco, has been scarcely studied, despite its known potential for pharmacological applications. In the present work, we investigated the composition, the anti-inflammatory activity, and the venom’s cytotoxic properties from fifteen honey bee venom (HBV) samples collected in three regions: northeast, central, and southern Morocco. The chemical assessment of honey bee venom was performed using LC-DAD/ESI/MSn, NIR spectroscopy and AAS spectroscopy. The antiproliferative effect was evaluated using human tumor cell lines, including breast adenocarcinoma, non-small cell lung carcinoma, cervical carcinoma, hepatocellular carcinoma, and malignant melanoma. Likewise, we assessed the anti-inflammatory activity using the murine macrophage cell line. The study provides information on the honey bee venom subspecies’ main components, such as melittin, apamin, and phospholipase A2, with compositional variation depending on the region of collection. Contents of toxic elements such as cadmium, chromium, and plumb were detected at a concentration below 5 ppm, which can be regarded as safe for pharmaceutical use. The data presented contribute to the first study in HBV from Apis mellifera intermissa and highlight the remarkable antiproliferative and anti-inflammatory effects of HBV, suggesting it to be a candidate natural medicine to explore.
Collapse
|
13
|
Eshtiaghi S, Nazari R, Fasihi-Ramandi M. In-Silico and In-Vitro Evaluation of Antibacterial, Cytotoxic, and Apoptotic Activity and Structure of Modified CM11 Peptide. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Salama MA, Younis MA, Talaat RM. Cytokine and inflammatory mediators are associated with cytotoxic, anti-inflammatory and apoptotic activity of honeybee venom. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:75-86. [PMID: 32452823 DOI: 10.1515/jcim-2019-0182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/12/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The present study aimed to evaluate cytotoxic, apoptotic, and anti-inflammatory properties of bee venom (BV) as well as changes in cytokine secretion levels and nitric oxide (NO) production using three different cancer cell lines [liver (Hep-G2), breast (MCF-7), and cervical (HPV-18 infected HeLa cells)] and two normal cells (splenocytes and macrophages (MQ). METHODS Cytotoxic activity of BV against tumor cell lines and normal splenocytes/MQ was tested by MTT assay. By ELISA (ELISA); Tumor necrosis factor (TNF-α), Interleukine (IL-10) and interferon (IFN-γ) were measured. Caspase three expressions was evaluated using reverse transcription-polymerase chain reaction (RT-PCR). Nitric oxide (NO) was estimated using a colorimetric assay. RESULTS BV has a significant cytotoxic effect on all cell lines in a dose- and time-dependent manner; none of them was toxic for normal cells. Treating Hep-G2 cells with BV showed a reduction in IL-10, elevation in TNF-α with no change in IFN-γ level. MCF-7 cells have low IL-10 and TNF-α and high IFN-γ production level. Elevation of IL-10 and IFN-γ coincides with a reduction in TNF-α level was demonstrated in HeLa cells. The expression of Caspase three was dramatically increased with elevation in BV concentration in all tested cancer cell lines. A gradual decrease in NO production by MQ with increasing BV dose was observed. CONCLUSION Taken together, our results stressed on the importance of BV as a potent anti-tumor agent against various types of cancers (Liver, Breast, and Cervix). Further steps towards the use of BV for pharmacological purposes must be done.
Collapse
Affiliation(s)
- Mohamed A Salama
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| | - Mohamed A Younis
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| |
Collapse
|
15
|
Jiang X, Qian K, Liu G, Sun L, Zhou G, Li J, Fang X, Ge H, Lv Z. Design and activity study of a melittin-thanatin hybrid peptide. AMB Express 2019; 9:14. [PMID: 30701481 PMCID: PMC6353975 DOI: 10.1186/s13568-019-0739-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The unique antimicrobial mechanism of antimicrobials make them a promising substitute for antibiotics for fighting drug-resistant bacteria. Both melittin and thanatin have antimicrobial bioactivity. However, thanatin does not inhibit the growth of Staphylococcus aureus. Melittin can inhibit S. aureus and has strong hemolytic activity. In the present study, the mutant fragments of melittin and thanatin were combined by flexible peptides to form a novel hybrid peptide, which was synthesized based on the secondary and tertiary structure prediction. The hybrid peptide inhibited S. aureus with a hemolytic concentration of above 45 μmol/L and inhibition rate in SMMC-7721 cells of 19.14%. The hybrid antimicrobial peptide, which was designed by the combination of α-helix and β-lamellar antimicrobial peptides, showed that both types of peptides did not interact with each either on spatial structure or biological activities, thereby providing a novel idea for the design of artificial antimicrobial peptides.
Collapse
|
16
|
Oktiansyah R, Juliandi B, Widayati KA, Juniantito V. Neuronal Cell Death and Mouse ( Mus musculus) Behaviour Induced by Bee Venom. Trop Life Sci Res 2018; 29:1-11. [PMID: 30112137 PMCID: PMC6072724 DOI: 10.21315/tlsr2018.29.2.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neuronal cell death can occur in a tissue or organ, including the brain, which affects memory. The objectives of this study were to determine the dose of bee venom that causes neuronal death and analyse the alteration of mouse behaviour, focusing in particular on spatial memory. Fifteen male mice of Deutsche Denken Yoken (DDY) strain were divided into control and treatment groups. Bee venom was injected six times for two weeks intraperitoneally with 1.88 mg/kg, 3.76 mg/kg, 5.6 mg/kg, and 7.48 mg/kg doses of venom. Brain histology was studied using haematoxylin-eosin stained paraffin embedded 5 μm coronal sections. A Y maze test was used to assay behaviour. Parameters observed were the number of dead neurons and the percentage of mice with altered behaviour. ANOVA showed that the effects of bee venom were significantly different in the case of the neuronal death parameter but were not significantly different in the case of the mice behaviour parameter. Duncan’s Multiple Range Test (DMRT) demonstrated that P4 (7.48 mg/kg) gave the highest effect of bee venom to promote neuronal death.
Collapse
Affiliation(s)
- Rian Oktiansyah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Berry Juliandi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Kanthi Arum Widayati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Vetnizah Juniantito
- Department of Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor 16680, Indonesia
| |
Collapse
|
17
|
Gajski G, Čimbora-Zovko T, Rak S, Osmak M, Garaj-Vrhovac V. Antitumour action on human glioblastoma A1235 cells through cooperation of bee venom and cisplatin. Cytotechnology 2016; 68:1197-205. [PMID: 25916941 PMCID: PMC4960167 DOI: 10.1007/s10616-015-9879-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/15/2015] [Indexed: 01/06/2023] Open
Abstract
Cisplatin (cDDP) is one of the most widely used anticancer-drugs in both therapy and research. However, cDDP-resistance is the greatest obstacle for the successful treatment of cancer patients. In the present study, the possible joint anticancer effect of bee venom (BV), as a natural toxin, and cDDP towards human glioblastoma A1235 cells was evaluated. Treatment with BV alone in concentrations of 2.5-30 μg/ml displayed dose-dependent cytotoxicity towards A1235 cells, as evaluated with different cytotoxicity assays (MTT, Cristal violet and Trypan blue exclusion assay), with an IC50 value of 22.57 μg/ml based on the MTT results. Furthermore, BV treatment induced necrosis, which was confirmed by typical morphological features and fast staining with ethidium-bromide dye. Pre-treatment with BV induced cell sensitization to cDDP, indicating that BV could improve the killing effect of selected cells when combined with cDDP. The isobologram method used to determine the extent of synergism in combining two agents to examine their possible therapeutic effect showed that combined treatment induced an additive and/or synergistic effect towards selected cells depending on the concentration of both. Hence, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. The obtained results indicate that joint treatment with BV could be useful from the point of minimizing the cDDP concentration during chemotherapy, thus reducing and/or postponing the development of drug resistance. Our data, in accordance with previously reported results, suggests that BV could be used in the development of a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Tamara Čimbora-Zovko
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Sanjica Rak
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Maja Osmak
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
18
|
Gajski G, Domijan AM, Žegura B, Štern A, Gerić M, Novak Jovanović I, Vrhovac I, Madunić J, Breljak D, Filipič M, Garaj-Vrhovac V. Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon 2016; 110:56-67. [DOI: 10.1016/j.toxicon.2015.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
|
19
|
Gajski G, Čimbora-Zovko T, Rak S, Rožman M, Osmak M, Garaj-Vrhovac V. Combined antitumor effects of bee venom and cisplatin on human cervical and laryngeal carcinoma cells and their drug resistant sublines. J Appl Toxicol 2015; 34:1332-41. [PMID: 25493319 DOI: 10.1002/jat.2959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we investigated the possible combined anticancer ability of bee venom (BV) and cisplatin towards two pairs of tumour cell lines: parental cervical carcinoma HeLa cells and their cisplatin-resistant HeLa CK subline,as well as laryngeal carcinoma HEp-2 cells and their cisplatin-resistant CK2 subline. Additionally, we identified several peptides of BV in the BV sample used in the course of the study and determined the exact concentration of MEL. BV applied alone in concentrations of 30 to 60 μg ml(–1) displayed dose-dependent cytotoxicity against all cell lines tested. Cisplatin-resistant cervical carcinoma cells were more sensitive to BV than their parental cell lines (IC(50) values were 52.50 μg ml(–1) for HeLa vs.47.64 μg ml(–1) for HeLa CK cells), whereas opposite results were obtained for cisplatin-resistant laryngeal carcinoma cells (IC(50) values were 51.98 μg ml(–1) for HEp-2 vs. > 60.00 μg ml(–1) for CK2 cells). Treatment with BV alone induced a necrotic type of cell death, as shown by characteristic morphological features, fast staining with ethidium-bromide and a lack of cleavage of apoptotic marker poly (ADP-ribose) polymerase (PARP) on Western blot. Combined treatment of BV and cisplatin induced an additive and/or weak synergistic effect towards tested cell lines, suggesting that BV could enhance the killing effect of selected cells when combined with cisplatin. Therefore, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. Our results suggest that combined treatment with BV could be useful from the point of minimizing the cisplatin concentration during chemotherapy, consequently reducing and/or postponing the development of cisplatin resistance.
Collapse
|
20
|
Combined cytogenotoxic effects of bee venom and bleomycin on rat lymphocytes: an in vitro study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:173903. [PMID: 24822179 PMCID: PMC4009237 DOI: 10.1155/2014/173903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/21/2014] [Indexed: 01/24/2023]
Abstract
This study was carried out to determine the cytotoxic and genotoxic effects of bee venom (BV) and/or the chemotherapeutic agent bleomycin (BLM) on healthy isolated rat lymphocytes utilizing morphometric and molecular techniques. Using the Ficoll-Histopaque density gradient centrifugation technique, lymphocytes were isolated, divided into groups, and subjected to BV and/or BLM at incubation medium concentrations of 10 or 20 μg/mL respectively for 24 and 72 hrs. An MTT assay and fluorescent microscopy examinations were used to assess the cytotoxic effects. To determine the predominant type of BV and/or BLM-induced cell death, LDH release assay was employed beside quantitative expression analyses of the apoptosis-related genes (Caspase-3 and Bcl-2). The genotoxic effects of the tested compounds were evaluated via DNA fragmentation assay. The results of these assays demonstrated that BV potentiates BLM-induced cytotoxicity through increased LDH release and diminished cell viability. Nevertheless, BV significantly inhibited the BLM-induced DNA damage. The results verify that BV significantly attenuates the genotoxic effects of BLM on noncancerous isolated rat lymphocytes but does not diminish BLM cytotoxicity.
Collapse
|
21
|
Gajski G, Garaj-Vrhovac V. Melittin: a lytic peptide with anticancer properties. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:697-705. [PMID: 23892471 DOI: 10.1016/j.etap.2013.06.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 05/28/2023]
Abstract
Melittin (MEL) is a major peptide constituent of bee venom that has been proposed as one of the upcoming possibilities for anticancer therapy. Recent reports point to several mechanisms of MEL cytotoxicity in different types of cancer cells such as cell cycle alterations, effect on proliferation and/or growth inhibition, and induction of apoptotic and necrotic cell death trough several cancer cell death mechanisms, including the activation of caspases and matrix metalloproteinases. Although cytotoxic to a broad spectrum of tumour cells, the peptide is also toxic to normal cells. Therefore its therapeutic potential cannot be achieved without a proper delivery vehicle which could be overcome by MEL nanoparticles that possess the ability to safely deliver significant amount of MEL intravenously, and to target and kill tumours. This review paper summarizes the current knowledge and brings latest research findings on the anticancer potential of this lytic peptide with diverse functions.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| |
Collapse
|