1
|
Nguyen TT, Pham TNM, Nguyen CTN, Truong TN, Bishop C, Doan NQH, Le THV. Phytochemistry and Cytotoxic Activity of Aquilaria crassna Pericarp on MDA-MB-468 Cell Lines. ACS OMEGA 2023; 8:42356-42366. [PMID: 38024711 PMCID: PMC10652264 DOI: 10.1021/acsomega.3c04656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
The extracts of Aquilaria crassna pericarp were investigated on the MDA-MB-468, a breast cancer cell line, at desired concentration (1-50 μg/mL). The results showed that the dichloromethane (DCM) extract exhibited the strongest toxicity and was carried out subsequently. A total of nine compounds were isolated from the DCM extract using column chromatography and recrystallization, of which their structures were determined. Intriguingly, in addition to the previously reported compounds, neocucurbitacin A, a cucurbitacin triterpenoid aglycone with a lactone in ring A, was reported for the first time in the Aquilaria genus. Among the isolated compounds, cucurbitacin E highly inhibited MDA-MB-468 cell growth in a dose-dependent manner. Owing to binding abilities with the SH2 domain in the molecular docking study, cucurbitacin E, neocucurbitan A, neocucurbitan B, and cucurbitacin E 2-O-β-d-glucopyranoside act as STAT3 inhibitors and are suitable for further research. This study suggests thatAquilaria crassnafruits could serve as a promising source of natural compounds with potential anticancer effects, particularly against breast cancer.
Collapse
Affiliation(s)
- Thao Thi
Thu Nguyen
- Faculty
of Pharmacy, University of Medicine and
Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Vietnam
| | - Thu Nguyen Minh Pham
- Faculty
of Pharmacy, University of Medicine and
Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Vietnam
| | - Chi Thi Ngoc Nguyen
- Faculty
of Pharmacy, University of Medicine and
Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Vietnam
| | - Tuyen N. Truong
- Faculty
of Pharmacy, University of Medicine and
Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Vietnam
| | - Cleo Bishop
- Center
of Cell Biology and Cutaneous Research, Blizard Institute, Barts and
The London Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, U.K.
| | - Nam Q. H. Doan
- Faculty
of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward
13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Thi Hong Van Le
- Faculty
of Pharmacy, University of Medicine and
Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
2
|
Mohamed FZ, Eid SA, Elghareb MS, Abas ASM. Molecular Docking and In Vivo Biological Studies of Sodium Salt of 3-(4-Methyl-2-oxo-2-H-quinoline-7-yloxy)-3-phenylacrylic Acid As Anticancer Agent. DOKL BIOCHEM BIOPHYS 2023; 512:300-318. [PMID: 38093135 DOI: 10.1134/s1607672923600203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 12/18/2023]
Abstract
Quinoline derivatives possess several therapeutic properties. Aim: studying the anticancer effect of 3-(4-methyl-2-oxo-2-H-quinoline-7-yloxy)-3-phenylacrylic acid's sodium solution on the Ehrlich ascites carcinoma (EAC). Median lethal dose (LD50) and dose response curve was determined for sodium salt solution of 3-(4-methyl-2-oxo-2-H-quinoline-7-yloxy)-3-phenylacrylic acid, then diving a group of one hundred Swiss albino mice, which are all females, into five groups: group 1: (negative control) where intraperitoneally injected with saline into mice for 10 successive days; group 2 (positive control), also namely (EAC-bearing group): where the EAC cells were intraperitoneally injected into mice (2.5 × 106 cells/mouse) only one time on the first day; group 3 which is defined as the (therapeutic group) where the Na+ salt of the synthetic compound was injected into the peritoneum of the mice (2.5 mg/kg) the very first day after the injection of the EAC, then the compound was injected every two days for a period of 10 days; group 4 which is the (preventive group) where the sodium salt of the synthetic compound (2.5 mg/kg) was injected in the peritoneum of the mice the day before the injection of the EAC, then the compound was successively injected every day for a period of ten days; and group 5 which is the (drug group) in which mice were repeatedly injected) in their peritoneum with the sodium salt of the synthetic compound (2.5 mg/kg on a daily basis over a period of ten days. On the eleventh day of the trial, EAC cells were harvested from each mouse in a heparinized saline, in addition to blood samples, liver and kidney tissues which are also collected. Molecular docking showed that compound's sodium salt was docked into (PDB: 2R7G) and (PDB: 2R3I), which are the retinoblastoma protein receptor and the cyclin D-1 receptor respectively. Compared to those in the positive control group, mice in both the therapeutic and preventive groups, has shown a significant decrease in MDA, cyclin D-1 levels in the tissues of both liver and kidney tissues, in addition to the serum ALT, AST, CK-MB, and LDH activities, and the serum urea and creatinine concentration. However, mice in the formerly mentioned groups, both therapeutic and preventive groups, have shown an increase in the serum albumin, total protein, retinoblastoma protein in both liver and kidney tissues as well as the total antioxidant capacity, when compared to mice in the positive control group. It is worth mentioning that histopathological findings have confirmed that. Sodium salt of 3-(4-methyl-2-oxo-2H-quinoline-7-yloxy)-3-phenylacrylic acid showed potential in vivo anticancer and antioxidant effects against Ehrlich ascites carcinoma cells; (EAC cells).
Collapse
Affiliation(s)
- Faten Z Mohamed
- Chemistry Department (Biochemistry Branch), Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Sarah A Eid
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mohamed S Elghareb
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Al-Shimaa M Abas
- Chemistry Department (Biochemistry Branch), Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
3
|
Cheng X, Qin M, Chen R, Jia Y, Zhu Q, Chen G, Wang A, Ling B, Rong W. Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases. Molecules 2023; 28:6221. [PMID: 37687049 PMCID: PMC10488440 DOI: 10.3390/molecules28176221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) is widely distributed in the desert areas of the world. The fruit bodies of C. colocynthis are recognized for their wide range of nutraceutical potential, as well as medicinal and pharmaceutical uses. The plant has been reported for various uses, such as asthma, bronchitis, cancer, colic, common cold, cough, diabetes, dysentery, and jaundice. The fruit has been extensively studied for its biological activities, which include insecticide, antitumor, and antidiabetic effects. Numerous bioactive compounds have been reported in its fruit bodies, such as essential oils, fatty acids, glycosides, alkaloids, and flavonoids. Of these, flavonoids or caffeic acid derivatives are the constituents associated with the inhibition of fungal or bacterial growth, whereas eudesmane sesquiterpenes or sesquiterpene lactones are most active against insects, mites, and nematodes. In this review, the scientific evidence for the biological activity of C. colocynthis against insecticide, cytotoxic, and antidiabetic effects is summarized.
Collapse
Affiliation(s)
- Xiaotian Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University & The First People’s Hospital of Yancheng, Yancheng 224001, China
| | - Minni Qin
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Rongrong Chen
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Yunxia Jia
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Guangtong Chen
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Bai Ling
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University & The First People’s Hospital of Yancheng, Yancheng 224001, China
| | - Weiwei Rong
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| |
Collapse
|
4
|
Aba PE, Ihedioha JI, Asuzu IU. A review of the mechanisms of anti-cancer activities of some medicinal plants-biochemical perspectives. J Basic Clin Physiol Pharmacol 2023; 34:419-428. [PMID: 34936737 DOI: 10.1515/jbcpp-2021-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Cancer is a disease resulting in unbridled growth of cells due to dysregulation in the balance of cell populations. Various management procedures in handling cases of cancer are not without their adverse side effects on the normal cells. Medicinal plants/herbs have been in use in the management of various ailments, including cancer, for a long time. Medicinal plants have been credited with wide safety margins, cost effectiveness, availability and diverse activities. This study reviewed various mechanisms of anti-cancer activities of some medicinal plants from a biochemical perspective. The mechanisms of anti-cancer activities of plant compounds addressed in this article include induction of apoptosis, anti-angiogenic effects, anti-metastasis, inhibition of cell cycle, inhibition of DNA destruction and effects on key enzymes, cytotoxic and anti-oxidant effects. The anti-cancer activities of some of the plants involve more than one mechanism.
Collapse
Affiliation(s)
- Patrick E Aba
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - John I Ihedioha
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Isaac U Asuzu
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
5
|
Zhou C, Wang P, Zeng Q, Zeng R, Hu W, Sun L, Liu S, Luan F, Zhu Q. Comparative chloroplast genome analysis of seven extant Citrullus species insight into genetic variation, phylogenetic relationships, and selective pressure. Sci Rep 2023; 13:6779. [PMID: 37185306 PMCID: PMC10130142 DOI: 10.1038/s41598-023-34046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
Citrullus ecirrhosus, Citrullus rehmii, and Citrullus naudinianus are three important related wild species of watermelon in the genus Citrullus, and their morphological differences are clear, however, their chloroplast genome differences remain unknown. This study is the first to assemble, analyze, and publish the complete chloroplast genomes of C. ecirrhosus, C. rehmii, and C. naudinianus. A comparative analysis was then conducted among the complete chloroplast genomes of seven extant Citrullus species, and the results demonstrated that the average genome sizes of Citrullus is 157,005 bp, a total of 130-133 annotated genes were identified, including 8 rRNA, 37 tRNA and 85-88 protein-encoding genes. Their gene content, order, and genome structure were similar. However, noncoding regions were more divergent than coding regions, and rps16-trnQ was a hypervariable fragment. Thirty-four polymorphic SSRs, 1,271 SNPs and 234 INDELs were identified. Phylogenetic trees revealed a clear phylogenetic relationship of Citrullus species, and the developed molecular markers (SNPs and rps16-trnQ) could be used for taxonomy in Citrullus. Three genes (atpB, clpP1, and rpoC2) were identified to undergo selection and would promote the environmental adaptation of Citrullus.
Collapse
Affiliation(s)
- Cong Zhou
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Putao Wang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Qun Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Rongbin Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Wei Hu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Lei Sun
- Department of Agronomy and Horticulture, Liaoning Agricultural Technical College, Yingkou, 115009, People's Republic of China
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qianglong Zhu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
6
|
Phytochemical, Antimicrobial, Antioxidant, and In Vitro Cytotoxicity Evaluation of Echinops erinaceus Kit Tan. SEPARATIONS 2022. [DOI: 10.3390/separations9120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wild plants are used by many cultures for the treatment of diverse ailments. However, they are formed from mixtures of many wanted and unwanted phytochemicals. Thus, there is a necessity to separate the bioactive compounds responsible for their biological activity. In this study, the chemical composition as well as antimicrobial and cytotoxic activities of Echinops erinaceus Kit Tan (Asteraceae) were investigated. This led to the isolation and identification of seven compounds, two of which are new (erinaceosin C3 and erinaceol C5), in addition to methyl oleate (C1) and ethyl oleate (C2), loliolide (C4), (E)-p-coumaric acid (C6), and 5,7,3`,5`-tetrahydroxy flavanone (C7). The structures of the isolated compounds were elucidated by 1D, 2D NMR, and HR-ESI-MS. The methanol extract showed the highest antimicrobial activity among the tested extracts and fractions. The n-hexane and EtOAc extracts showed remarkable antimicrobial activity against B. subtilus, P. aeruginosa, E. coli, and C. albicans. A cytotoxicity-guided fractionation of the most bioactive chloroform extract resulted in the isolation of bioactive compounds C1/C2, which showed significant cytotoxicity against HCT-116 and CACO2 cell lines (IC50 24.95 and 19.74 µg/mL, respectively), followed by compounds C3 (IC50 82.82 and 76.70 µg/mL) and C5 (IC50 99.09 and 87.27 µg/mL), respectively. The antioxidant activity of the bioactive chloroform fractions was screened. Molecular docking was used to explain the results of the antimicrobial and anticancer activities against five protein targets, including DNA gyrase topoisomerase II, enoyl-acyl carrier protein reductase of S. aureus (FabI), dihydrofolate reductase (DHFR), β-catenin, and human P-glycoprotein (P-gp).
Collapse
|
7
|
El-Seedi HR, Kotb SM, Musharraf SG, Shehata AA, Guo Z, Alsharif SM, Saeed A, Hamdi OAA, Tahir HE, Alnefaie R, Verpoorte R, Khalifa SAM. Saudi Arabian Plants: A Powerful Weapon against a Plethora of Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:3436. [PMID: 36559548 PMCID: PMC9783889 DOI: 10.3390/plants11243436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The kingdom of Saudi Arabia (SA) ranks fifth in Asia in terms of area. It features broad biodiversity, including interesting flora, and was the historical origin of Islam. It is endowed with a large variety of plants, including many herbs, shrubs, and trees. Many of these plants have a long history of use in traditional medicine. The aim of this review is to evaluate the present knowledge on the plants growing in SA regarding their pharmacological and biological activities and the identification of their bioactive compounds to determine which plants could be of interest for further studies. A systematic summary of the plants' history, distribution, various pharmacological activities, bioactive compounds, and clinical trials are presented in this paper to facilitate future exploration of their therapeutic potential. The literature was obtained from several scientific search engines, including Sci-Finder, PubMed, Web of Science, Google Scholar, Scopus, MDPI, Wiley publications, and Springer Link. Plant names and their synonyms were validated by 'The Plant List' on 1 October 2021. SA is home to approximately 2247 plant species, including native and introduced plants that belong to 142 families and 837 genera. It shares the flora of three continents, with many unique features due to its extreme climate and geographical and geological conditions. As plants remain the leading supplier of new therapeutic agents to treat various ailments, Saudi Arabian plants may play a significant role in the fight against cancer, inflammation, and antibiotic-resistant bacteria. To date, 102 active compounds have been identified in plants from different sites in SA. Plants from the western and southwestern regions have been evaluated for various biological activities, including antioxidant, anti-cancer, antimicrobial, antimalarial, anti-inflammatory, anti-glycation, and cytotoxic activities. The aerial parts of the plants, especially the leaves, have yielded most of the bioactive compounds. Most bioactivity tests involve in vitro assessments for the inhibition of the growth of tumour cell lines, and several compounds with in vitro antitumour activity have been reported. More in-depth studies to evaluate the mode of action of the compounds are necessary to pave the way for clinical trials. Ecological and taxonomical studies are needed to evaluate the flora of SA, and a plan for the conservation of wild plants should be implemented, including the management of the protection of endemic plants.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Safaa M. Kotb
- Department of Chemistry & Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sultan M. Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Omer A. A. Hamdi
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum 11115, Sudan
| | | | - Rasha Alnefaie
- Department of Biology, Faculity of Science, Al-Baha University, Albaha 65779, Saudi Arabia
| | - Rob Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, P.O. Box 9505, 2300RA Leiden, The Netherlands
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Mohamed GA, Ibrahim SRM, El-Agamy DS, Elsaed WM, Sirwi A, Asfour HZ, Koshak AE, Elhady SS. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-ĸB/NLRP3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115223. [PMID: 35354089 DOI: 10.1016/j.jep.2022.115223] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cucurbitacins are highly oxygenated tetracyclic triterpenoids, that represent the major metabolites reported from C. colocynthis (L.) Schrad.. Cucurbitacin E glucoside (CuE) is a tetracyclic triterpene glycoside separated from Cucurbitaceae plants. CuE has potent anti-inflammatory, immunomodulatory, and anti-tumor properties. AIM OF THE STUDY The current study aimed at examining the hepatoprotective effect of CuE against concanavalin A (Con A)-produced hepatitis. MATERIALS AND METHODS Mice were intravenously administered Con A (15 mg/kg) to induce AIH. CuE was orally administered at two different doses for five days preceding Con A injection. RESULTS The results revealed that CuE pretreatment markedly attenuated the serum indices of hepatotoxicity and the severity of hepatic lesions. CuE depressed Con A-provoked increment in CD4+ T-cells in hepatic tissue. The antioxidant activity of CuE was evident through its ability to decrease markers of Con A-induced oxidative stress (malondialdehyde, 4-hydroxyenonanal, and protein carbonyl) and intensified the antioxidants in the hepatic tissue (SOD, GSH, and TAC). CuE increased mRNA expression of SIRT1 and Nrf2 as well as its binding capacity. Subsequently, CuE augmented mRNA expression of Nrf2 targeted genes as NQO1, GCL, and HO-1 and recovered its normal level. CuE inhibited the activation of NF-κB/downstream pro-inflammatory mediators signaling. Furthermore, CuE attenuated the mRNA expression of NLRP3 and its associated genes. CONCLUSION Collectively, these results demonstrated the remarkable hepatoprotective potential of CuE towards Con A-induced AIH which was mediated via suppression of oxidative stress, enhancing SIRT1/Nrf2/HO-1, and prohibition of the NF-κB/NLRP3 signaling. CuE could be a candidate for hepatitis patients.
Collapse
Affiliation(s)
- Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, 30078, Saudi Arabia.
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Sameh S Elhady
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
9
|
Li X, Wu L, Wu R, Sun M, Fu K, Kuang T, Wang Z. Comparison of medicinal preparations of Ayurveda in India and five traditional medicines in China. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114775. [PMID: 34742863 DOI: 10.1016/j.jep.2021.114775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurveda is the main traditional healthcare system in Indian medicine. Tibetan medicine (TM), Mongolian medicine (MM), Buddhist medicine (BM), Dai medicine (DM), and Uyghur medicine (UM) are main traditional medicines practiced in China. These are existing traditional medical systems that still play a role in disease prevention and treatment. AIM OF THE STUDY To reveal the similarities and differences of traditional medicinal preparations between Ayurveda in India and five traditional medicines in China to deepen medical exchanges and cooperation between the two countries and beyond. METHODS All preparations were extracted from statutory pharmacopoeias, ministry standards, and prescription textbooks from China and India. The information of each preparation, such as therapeutic uses, medicinal materials, and preparation forms, was recorded in Excel for statistical analysis and visual comparison. RESULTS A total of 645 Ayurvedic preparations, 458 TM preparations, 164 MM preparations, 616 BM preparations, 227 DM preparations, and 94 UM preparations were identified. Preparations of the six traditional medicines were mostly used for treating digestive, respiratory, and urogenital system diseases. The preparation forms of these six traditional medicines are mainly pills and powders. There are 38 shared-use medicinal materials in Ayurveda and TM preparations, 25 in Ayurveda and MM preparations, 30 in Ayurveda and BM preparations, 39 in Ayurveda and DM preparations, and 31 in Ayurveda and UM preparations. Finally, we selected one important shared-use preparation (Triphala) and 51 medicinal materials to research traditional use and modern pharmacology. CONCLUSIONS These preparations are used by different prescribers and users of medicinal materials in different medical systems with the similarities and differences. The similarities may reflect the historical exchanges of traditional medicines between the two countries. The differences showed that traditional medicines in China have absorbed some theories, diagnoses, and treatments from Ayurveda but also retained their own ethnic and regional characteristics.
Collapse
Affiliation(s)
- Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Kuang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Institute of Traditional Indian Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Institute of Traditional Indian Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Differential expression of gluconeogenic enzymes in early- and late-stage diabetes: the effect of Citrullus colocynthis (L.) Schrad. Seed extract on hyperglycemia and hyperlipidemia in Wistar-Albino rats model. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The medicinal plant Citrullus colocynthis (L.) Schrad. (C. colocynthis) may benefit patients at different phases of diabetes by attuning to contrasting situations. Our primary objective was to find the mechanism(s) behind the antidiabetic/anti-hyperlipidemic effects of C.colocynthis seed aqueous extract (CCAE) in two different stages of type 2 diabetes (T2D) in rats.
Methods
Fasting blood sugar (FBS) levels, body weights, and the degree of impaired glucose tolerance (IGT) were measured in healthy nondiabetic control rats (Con), as well as rats with early and late stages of T2D, denoted as ET2D and LT2D, respectively. CCAE was intraperitoneally (IP) injected for 28 days. In the end, the hepatic mRNA expression levels of the following genes were determined by RT-PCR: glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), insulin-dependent sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), peroxisome proliferator-activated receptor alpha (PPARα), and carnitine palmitoyltransferase I (CPT1). The liver was examined by hematoxylin and eosin (H&E) and Oil-Red O staining. CCAE was partially analyzed by HPLC-DAD.
Results
ET2D and LT2D were characterized by differentially elevated FBS, deteriorated bodyweight, and significant IGT compared to Con. Hepatosteatoses of varying morphologies and higher hepatic expression of G6Pase than PRPCK in ET2D versus the opposite in LT2D further confirmed the divergent nature of metabolic aberrations. At the end of 28 days, the high levels of FBS, alkaline phosphatase (ALP), triglyceride (TG), urea, hepatic protein carbonyl content (PCC), and alanine and aspartate aminotransferases (AST and ALT, respectively) persisted in untreated LT2D. CCAE ameliorated oxidative stress and upregulated PPARα expression in diabetic groups and Con; it downregulated CPT1 expression in the LT2D group. CCAE’s ability to lower FBS and serum and hepatic TG in both ET2D and LT2D indicated its ability to act via different mechanisms. Ferulic acid (Fer A) and rutin hydrate (RH) were detected in CCAE.
Conclusion
CCAE lowered the FBS in ET2D via inhibiting the hepatic G6Pase expression (glycogenolysis). In LT2D, CCAE abated sugar levels by diverting PEPCK activity, preferably towards glyceroneogenesis than gluconeogenesis. The preserved triglyceride/fatty acid (TG/FA) cycle, the upregulated PPARα, and the downregulated CPT1 gene expressions reduced serum and hepatic TG.
Collapse
|
11
|
Gamal G, Abo-El-Seoud KA, Attia G. Triterpenoids from the aerial parts of Anabasis articulata (Forssk) Moq: gastroprotective effect in vivo with in silico studies, cytotoxic and antimicrobial activities. Nat Prod Res 2021; 36:4076-4084. [PMID: 34380340 DOI: 10.1080/14786419.2021.1961769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A new triterpenoid named 3β,20α-dihydroxy-30-nor-olean-12-ene-23,28 dioic acid (4) along with 3β-hydroxy-23-aldehyde-lup-20(29)-ene-28-oic acid (1), 3β-hydroxy-23-aldehyde-30-nor-olean-12,20(29)-diene-28-oic acid (2), 3β-hydroxy-lup-20(29)-ene-23,28 dioic acid (3), 3β-hydroxy-lup-20(29)-ene-23,28 dioic acid-23-O-β-D-glucopyranosyl ester (5), 3-O-β-D-glucuronopyranosyl-lup-20(29)-ene-23,28 dioic acid-28-O-β-D-glucopyranosyl ester (6), 3-O-β-D-glucuronopyranosyl-lup-20(29)-ene-23-aldehyde-28-oic acid-28-O-β-D glucopyranosyl ester (7) were isolated for the first time from the aerial parts of Anabasis articulata (Forssk) Moq. Isolated pure compounds were structurally elucidated using spectral analysis. Cytotoxic, antimicrobial, antiulcer activities and antioxidant parameters were evaluated using the total methanol extract and its successive fractions. The methylene chloride fraction showed strong cytotoxic activity against HepG-2 (6.9 µg/ml) and HCT-116 (5.5 µg/ml) tumour cell lines in comparative with 5-fluorouracil (7.9 µg/ml). Treatment of indomethacin induced ulcerated rats with ethyl acetate fraction (400 mg/kg, p.o./day) achieved reduced Ulcer index (0.18), potent inhibition percentage of ulceration (84.86%) in comparison to ranitidine and high antioxidant effect. Compound(6) exhibited high docking score against gastric H+/K+ ATPase.
Collapse
Affiliation(s)
- Ghada Gamal
- Pharmacognosy Department, Faculty of Pharmacy, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | | | - Ghada Attia
- Pharmacognosy Department; Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Sureda A, Martorell M, Capó X, Monserrat-Mesquida M, Quetglas-Llabrés MM, Rasekhian M, Nabavi SM, Tejada S. Antitumor Effects of Triterpenes in Hepatocellular Carcinoma. Curr Med Chem 2021; 28:2465-2484. [PMID: 32484765 DOI: 10.2174/0929867327666200602132000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triterpenes are a large group of secondary metabolites mainly produced by plants with a variety of biological activities, including potential antitumor effects. Hepatocellular carcinoma (HCC) is a very common primary liver disease spread worldwide. The treatment can consist of surgical intervention, radiotherapy, immunotherapy and chemotherapeutic drugs. These drugs mainly include tyrosine multikinase inhibitors, although their use is limited by the underlying liver disease and displays side effects. For that reason, the utility of natural compounds such as triterpenes to treat HCC is an interesting line of research. No clinical studies are reported in humans so far. OBJECTIVE The aim of the present work is to review the knowledge about the effects of triterpenes as a possible coadjuvant tool to treat HCC. RESULTS In vitro and xenograft models have pointed out the cytotoxic and anti-proliferative effects as well as improvements in tumor growth and development of many triterpenes. In addition, they have also shown to be chemosensitizing agents when co-administered with chemotherapeutic agents. The mechanisms of action are diverse and involve the participation of mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, and the survival-associated PI3K / Akt signaling pathway. However, no clinical studies are still reported in humans. CONCLUSION Triterpenes could become a future strategy to address HCC or at least improve results when administered in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| |
Collapse
|
13
|
Anti-Tumor and Anti-Inflammatory Activity In Vivo of Apodanthera congestiflora Cogn. (Cucurbitaceae). Pharmaceutics 2021; 13:pharmaceutics13050743. [PMID: 34069908 PMCID: PMC8157552 DOI: 10.3390/pharmaceutics13050743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
This work aimed to carry out a study of Apodanthera congestiflora by investigating its chemical composition and pharmacological potential. From the dichloromethane phase (Dic-Ac) of the A. congestiflora stems, three compounds were identified: cayaponoside C5b (Ac-1), cabenoside C (Ac-2) and fevicordin C2 glucoside (Ac-3), being last identified for the first time as a natural product. These compounds were obtained by chromatographic methods and their structures were elucidated by means of spectroscopic analysis of IR, MS and NMR. In the quantification of Dic-Ac, it was possible to observe the presence of 7% of cayaponoside C5b. Dic-Ac showed significant toxicity for in vivo tests, with macroscopic and biochemical changes. The anti-inflammatory activity of Dic-Ac was investigated using the paw edema model. A decrease in inflammatory signs was observed in the first 5 h and the most effective dose in reducing edema with was 7.5 mg kg-1 (66.6%). Anti-tumor activity of Dic-Ac was evaluated by Ehrlich's carcinoma model, which showed inhibition rate of 78.46% at 15 mg kg-1 dosage. The phytochemical investigation, together with the biological tests carried out in this study, demonstrated that A. congestiflora is a promising species in the search for therapeutics, since it contains substances with high pharmacological potential in its composition.
Collapse
|
14
|
Alami Merrouni I, Elachouri M. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113435. [PMID: 33022340 DOI: 10.1016/j.jep.2020.113435] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is a major health problem worldwide. Drugs' side effects and high cost of treatment remain the main limitations of conventional therapy. Nowadays, developing new therapeutic strategies is necessary. Therefore, medicinal plants can be used to promote novel, safe, and potent anticancer drugs through their natural compounds. AIM OF THE STUDY This review aims to provide scientific evidence related to the anticancer activities of medicinal plants used by Moroccan people as well as approving their efficiency as an alternative cancer therapy. METHODS An ethnopharmacological review approach was conducted by analyzing Moroccan published ethnobotanical surveys from 1991 to 2019 and consulting peer-reviewed articles worldwide to investigate the pharmacological, phytochemical, and clinical effects related to the anticancer activities. Plants with anticancer proprieties were classified into four groups: (a) plants only cited as anticancer, (b) plants pharmacologically investigated, (c) plants with bioactive compounds tested as anticancer, and (d) plants clinically investigated. RESULTS A total of 103 plant species belonging to 47 botanical families used by Moroccans to treat cancer have been recorded. Aristolochia fontanesii Boiss. & Reut, Marrubium vulgare L., and Allium sativum L. are the most referred species in Morocco. Medicinal plants used for cancer treatment were classified into four groups: 48 species were used traditionally as anticancer (group a), 41 species pharmacologically investigated for their anticancer activities (group b), 32 plants with bioactive compounds tested against cancer (group c), and eight plants were clinically investigated for their anticancer effects (group d). Out of 82 plants' extracts pharmacologically tested (from plants of group b), only 24 ones show a significant cytotoxic effect. A total of seventy-seven compounds are isolated from plants of group (c). However, only six ones were clinically evaluated, and most of them exhibit a beneficial effect on cancerous patients with few side effects. CONCLUSION Medicinal plants can be a promising candidate for alternative cancer therapy. Nevertheless, it is critical to increasing the clinical trials to confirm their beneficial effect on patients with cancer. Overall, this review can serve as a database for further studies.
Collapse
Affiliation(s)
- Ilyass Alami Merrouni
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
15
|
Anticancer natural medicines: An overview of cell signaling and other targets of anticancer phytochemicals. Eur J Pharmacol 2020; 888:173488. [DOI: 10.1016/j.ejphar.2020.173488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
|
16
|
Ayogu JI, Odoh AS. Prospects and Therapeutic Applications of Cardiac Glycosides in Cancer Remediation. ACS COMBINATORIAL SCIENCE 2020; 22:543-553. [PMID: 32786321 DOI: 10.1021/acscombsci.0c00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Active metabolites from natural sources are the predominant molecular targets in numerous biological studies owing to their appropriate compatibility with biological systems and desirable selective toxicities. Thus, their potential for therapeutic development could span a broad scope of disease areas, including pathological and neurological dysfunctions. Cardiac glycosides are a unique class of specialized metabolites that have been extensively applied as therapeutic agents for the treatment of numerous heart conditions, and more recently, they have also been explored as probable antitumor agents. They are a class of naturally derived compounds that bind to and inhibit Na+/K+-ATPase. This study presents cardiac glycosides and their analogues with highlights on their applications, challenges, and prospects as lead compounds for cancer treatment.
Collapse
Affiliation(s)
- Jude I. Ayogu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria
- Department of Chemistry, School of Physical and Chemical Science, University of Canterbury, Christchurch 8041, New Zealand
| | - Amaechi S. Odoh
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
17
|
Negm WA, Abo El-Seoud KA, Kabbash A, Kassab AA, El-Aasr M. Hepatoprotective, cytotoxic, antimicrobial and antioxidant activities of Dioon spinulosum leaves Dyer Ex Eichler and its isolated secondary metabolites. Nat Prod Res 2020; 35:5166-5176. [PMID: 32643403 DOI: 10.1080/14786419.2020.1789636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Given the lack of adequate research on Dioon spinulosum (D. spinulosum) Dyer Ex Eichler, this study was conducted focusing on different biological activities and phytochemical investigation of D. spinulosum for the first time. D. spinulosum showed strong protective activity against DNA damage and potent activity against VERO cell line. It also presented antimicrobial and hepatoprotective activity. Phytochemical investigation of the leaves resulted in isolation of two new flavonoids, apigenin 7-O-α-d-glucopyranoside (15) and amentoflavone 7-O-α-l-rhamnopyranoside (16), in addition to fifteen known compounds: phytone (1), trans-phytol (2), β-sitosterol (3), stigmasterol (4), oliveriflavone (5), 7,4',7″,4″'-tetramethylamentoflavone (6), 7,4',7''-trimethylamentoflavone (7), scaidopitysin (8), bilobetin (9), isoginkgetin (10), aromadendrin (11), sotusflavone (12), engeletin (14) and eriocitrin (17) for the first time together with amentoflavone (13). Compounds (11) and (13) displayed very strong cytotoxic activity and showed the highest protective activity against DNA damage.
Collapse
Affiliation(s)
- Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amira A Kassab
- Department of Histology and Cell biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Basha SZ, Mohamed GA, Abdel-Naim AB, Hasan A, Abdel-Lateff A. Cucurbitacin E glucoside from Citrullus colocynthis inhibits testosterone-induced benign prostatic hyperplasia in mice. Drug Chem Toxicol 2019; 44:533-543. [PMID: 31298051 DOI: 10.1080/01480545.2019.1635149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disorder in men aged over 60 years and significantly contributes to the distressing lower urinary tract symptoms. Cucurbitacins are triterpene derivatives with diverse medicinal uses including prostate diseases. Cucurbitacin E glucoside was evaluated against testosterone-induced prostatic hyperplasia in mice. Our data indicate that it significantly inhibited the increase in prostate weight and prostate index. The compound ameliorated histopathological changes in prostatic architecture and inhibited the increase in glandular epithelial length induced by testosterone. These results were confirmed by decreased expression of cyclin D1 in prostatic tissues compared to those obtained from the testosterone-alone group. Also, it showed significant antioxidant activity as evidenced by inhibiting lipid peroxides accumulation, glutathione depletion and superoxide exhaustion. Further, it exhibited anti-inflammatory activity as it decreased cyclooxygenase-2 and interleukin-1β protein expression in prostatic tissues. Masson's trichrome staining of prostate sections indicated obvious antifibrotic activity that was supported by decreased α-smooth muscle actin expression. In conclusion, Cucurbitacin E glucoside inhibits testosterone-induced experimental BPH in mice due to, at least partly, its antiproliferative, antioxidant, anti-inflammatory, and antifibrotic effects.
Collapse
Affiliation(s)
- Salsabeel Z Basha
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Hasan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
19
|
Badria F, Ibrahim M, El-Senduny F, Youssef M, Elimam D, Abdel Bar F. Acetyl glycyrrhetinic acid methyl ester as a promising glycyrrhizin derivative against the breast cancer cells (MCF-7). JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2019. [DOI: 10.4103/jrptps.jrptps_60_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Abu-Darwish MS, Efferth T. Medicinal Plants from Near East for Cancer Therapy. Front Pharmacol 2018; 9:56. [PMID: 29445343 PMCID: PMC5797783 DOI: 10.3389/fphar.2018.00056] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/16/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Cancer is one of the major problems affecting public health worldwide. As other cultures, the populations of the Near East rely on medicinal herbs and their preparations to fight cancer. Methods: We compiled data derived from historical ethnopharmacological information as well as in vitro and in vivo results and clinical findings extracted from different literature databases including (PubMed, Scopus, Web of Science, and Google Scholar) during the past two decades. Results: In this survey, we analyzed the huge amount of data available on anticancer ethnopharmacological sources used in the Near East. Medicinal herbs are the most dominant ethnopharmacological formula used among cancer's patients in the Near East. The data obtained highlight for the first time the most commonly used medicinal plants in the Near East area for cancer treatment illustrating their importance as natural anticancer agents. The literature survey reveals that various Arum species, various Artemisia species, Calotropis procera, Citrullus colocynthis, Nigella sativa, Pulicaria crispa, various Urtica species, Withania somnifera, and others belong to the most frequently used plants among cancer patients in the Near East countries. Molecular modes of action that have been investigated for plant extracts and isolated compounds from Near East include cell cycle arrest and apoptosis induction with participation of major player in these processes such as p53 and p21, Bcl-2, Bax, cytochrome c release, poly (ADP-ribose) polymerase cleavage, activation of caspases, etc. Conclusion: The ethnopharmacology of the Near East was influenced by Arabic and Islamic medicine and might be promising for developing new natural and safe anticancer agents. Further research is required to elucidate their cellular and molecular mechanisms and to estimate their clinical activity.
Collapse
Affiliation(s)
- Mohammad S. Abu-Darwish
- Department of Basic and Applied Sciences, Shoubak University College, Al-Balqa’ Applied University, Al-Salt, Jordan
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
21
|
Barakat A, Islam MS, Ghawas HM, Al-Majid AM, El-Senduny FF, Badria FA, Elshaier YAM, Ghabbour HA. Substituted spirooxindole derivatives as potent anticancer agents through inhibition of phosphodiesterase 1. RSC Adv 2018; 8:14335-14346. [PMID: 35540737 PMCID: PMC9079959 DOI: 10.1039/c8ra02358a] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/02/2018] [Indexed: 12/02/2022] Open
Abstract
Spirooxindole is a promising chemo therapeutic agent. Possible targets include cancers of the liver, prostate, lung, stomach, colon, and breast. Here, we demonstrate a one-pot three-component reaction via a [3 + 2] cycloaddition/ring contraction sequence of a dipolarophile (activated alkene) with in situ-generated azomethine ylide (1,3-dipoles) without the use of any catalyst. The reaction provides efficient access to synthetically useful and biologically important spirooxindoles in high yield (69–94%) with high diastereoselectivity. The synthesized compounds were subjected to cytotoxicity evaluation using colorectal cancer (HCT-116), hepatocellular carcinoma (HepG2), and prostate cancer (PC-3) cells. Compounds 4i, 4j, and 4k showed potent cytotoxic activity and high selectivity against HCT-116 cells when compared to cisplatin. Meanwhile compound 4d retained high cytotoxic activity and selectivity against HepG2 and PC-3 cells in comparison to cisplatin. The mechanism of compound 4d was further studied using phosphodiesterase 1 enzyme and showed 74.2% inhibitory activity. A possible binding mode for compound 4d to PDE-1 was investigated by molecular modeling using OpenEye software. Pose predictions for the active compounds were demonstrated by ROCS alignments. Compound 4d has a special geometry and differs from other active compounds. Spirooxindole is a promising chemo therapeutic agent. Possible targets include cancers of the liver, prostate, lung, stomach, colon, and breast.![]()
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | - Hussien Mansur Ghawas
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | | | - Farid A. Badria
- Department of Pharmacognosy
- Faculty of Pharmacy
- Mansoura University
- Mansoura 35516
- Egypt
| | - Yaseen A. M. M. Elshaier
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Assuit 71524
- Egypt
| | - Hazem A. Ghabbour
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh 11451
- Saudi Arabia
| |
Collapse
|
22
|
Adeyemi OO, Ishola IO, Ajani ID. Citrullus colocynthis Linn. Fruit extract ameliorates cisplatin-induced hepato-renal toxicity in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 15:/j/jcim.ahead-of-print/jcim-2017-0086/jcim-2017-0086.xml. [PMID: 29236674 DOI: 10.1515/jcim-2017-0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022]
Abstract
Background Cisplatin-induced acute liver and kidney injuries are serious problems in cancer patients during treatment of solid tumours. Objective This study sought to investigate possible protective effect of ethanolic fruit extract of Citrullus colocynthis (CC) against cisplatin-induced hepato-renal toxicity in rats. Methods Thirty male albino rats (150-200 g) were divided into five groups (n=6) and treated as follows: group 1: vehicle (10 mL/kg, p.o.; normal control); group 2: vehicle (10 mL/kg); groups 3-5: CC (100, 200 or 400 mg/kg, p.o.), respectively, for 10 days. Cisplatin (7.5 mg/kg; i.p.) was administered on the 7th day to animals in groups (2-5) 1 h after pretreatment. The animals were euthanized on day 10 for haematological, biochemical and histological analysis. Results Cisplatin induced a significant increase in the serum levels of ALT, ALP, creatinine and blood urea nitrogen indicative of hepato-renal injury. More so, cisplatin caused marked increase in granulocyte, lymphocyte and platelets counts which were ameliorated by CC (100-400 mg/kg) treatment. In addition, cisplatin induced marked increase in MDA and nitrite levels coupled with deficits in glutathione, catalase and superoxide dismutase activities which were attenuated by CC administration. In vitro assay showed that CC scavenged DPPH and nitrite radicals (69.50 and 64.50 µg/mL, respectively). Total antioxidant capacity, phenolic and flavonoid contents are 24.27±0.09 mg QUE/g, 17.14±0.12 mg GAE/g and 10.20±0.09 mg QUE/g, respectively. CC preserved the liver and kidney histoarchitecture. Conclusions This study showed that C. colocynthis possesses hepatoprotective and nephroprotective actions possibly through enhancement of antioxidant defence system. Thus, it could be a potential adjuvant in cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, PMB 12003 Lagos, Nigeria
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, PMB 12003 Lagos, Nigeria
| | - Ifeoluwa D Ajani
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, PMB 12003 Lagos, Nigeria
| |
Collapse
|
23
|
Derivatives of Cucurbitacin-E-glucoside produced by Curvularia lunata NRRL 2178: Anti-inflammatory, antipyretic, antitumor activities, and effect on biochemical parameters. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2017. [DOI: 10.1016/j.fjps.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
24
|
Wang Z, Zhu W, Gao M, Wu C, Yang C, Yang J, Wu G, Yang B, Kuang H. Simultaneous determination of cucurbitacin B and cucurbitacin E in rat plasma by UHPLC-MS/MS: A pharmacokinetics study after oral administration of cucurbitacin tablets. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:63-69. [DOI: 10.1016/j.jchromb.2017.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/19/2022]
|
25
|
Zhu Q, Zhang M, Cui H, Fan C, Gao P, Wang X, Luan F. The complete chloroplast genome sequence of the Citrullus colocynthis L. (Cucurbitaceae). Mitochondrial DNA B Resour 2017; 2:480-482. [PMID: 33473871 PMCID: PMC7800171 DOI: 10.1080/23802359.2017.1361351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/26/2017] [Indexed: 11/29/2022] Open
Abstract
Citrullus colocynthis L. is one of the worldwide famous traditionally medicinal plants and widely applied in watermelon breeding for its multiple resistances. The complete nucleotide sequence of desert watermelon (Citrullus colocythis L.) chloroplast genome has been determined in this study. The genome was composed of 157,147 bp containing a pair of inverted repeats (IRs) of 26,149 bp, which was separated by a large single-copy region of 86,851 bp and a small single-copy region of 17,998 bp. A total of 123 genes were predicted including 86 protein-coding genes, eight rRNA genes and 29 tRNA genes. Phylogenetic analysis revealed that C. colocynthis were closely related to other two species in the genus Citrullus. The complete chloroplast genome of C. colocynthis would provide some significant information for Cucurbitaceae evolutionary and genomic studies.
Collapse
Affiliation(s)
- Qianglong Zhu
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Harbin, Heilongjiang, China
| | - Muyue Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Harbin, Heilongjiang, China
| | - Haonan Cui
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Harbin, Heilongjiang, China
| | - Chao Fan
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Hainan Base of Heilongjiang Agriculture Academy, Sanya, Hainan, China
| | - Peng Gao
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Harbin, Heilongjiang, China
| | - Xuezheng Wang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Harbin, Heilongjiang, China
| | - Feishi Luan
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Ahmad R, Ahmad N, Naqvi AA, Shehzad A, Al-Ghamdi MS. Role of traditional Islamic and Arabic plants in cancer therapy. J Tradit Complement Med 2017; 7:195-204. [PMID: 28417090 PMCID: PMC5388086 DOI: 10.1016/j.jtcme.2016.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022] Open
Abstract
ETHNO PHARMACOLOGICAL RELEVANCE This review article underlines individual Traditional Islamic and Arabic plant (TAI) and their role in treating cancer. The aim of the study is to specifically evaluate the progress of herbs, Arabic and Islamic traditional herbs in particular, applied in cancer treatment, so far. MATERIALS AND METHODS Islamic and Arabic plants were selected and identified through different literature survey using "Google scholar", "Web of science", "Scopus" and "PubMed". Each plant, from identified Arabic and Islamic plants list, was search individually for the most cited articles in the aforementioned databases using the keywords, "Anticancer", "Uses in cancer treatment", "Ethno pharmacological importance in cancer" etc. RESULTS The current review about Islamic and Arabic plants illuminates the importance of Islamic and Arabic plants and their impact in treating cancer. There is a long list of Islamic and Arabic plants used in cancer as mentioned in review with enormous amount of literature. Each plant has been investigated for its anticancer potential. The literature survey as mentioned in table shows; these plants are widely utilized in cancer as a whole, a part thereof or in the form of isolated chemical constituent. CONCLUSIONS This review strongly supports the fact; Arabic and Islamic traditional plants have emerged as a good source of complementary and alternative medicine in treating cancer. Traditional Arab-Islamic herbal-based medicines might be promising for new cancer therapeutics with low toxicity and minimal side effects. The plants used are mostly in crude form and still needs advance research for the isolation of phytochemicals and establishing its cellular and molecular role in treating cancer.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Natural Products and Alternative Medicines, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Atta Abbas Naqvi
- Department of Pharmacy Practice, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mastour Safer Al-Ghamdi
- Department of Pharmacology, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| |
Collapse
|
27
|
Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, Zare Marzouni H. Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study. J Evid Based Complementary Altern Med 2017; 22:982-995. [PMID: 28359161 PMCID: PMC5871268 DOI: 10.1177/2156587217696927] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is the second cause of death after cardiovascular diseases. With due attention to rapid progress in the phytochemical study of plants, they are becoming popular because of their anticancer effects. The aim of this study was to investigate the effective medicinal plants in the treatment of cancer and study their mechanism of action. In order to gather information the keywords “traditional medicine,” “plant compounds,” “medicinal plant,” “medicinal herb,” “toxicity,” “anticancer effect,” “cell line,” and “treatment” were searched in international databases such as ScienceDirect, PubMed, and Scopus and national databases such as Magiran, Sid, and Iranmedex, and a total of 228 articles were collected. In this phase, 49 nonrelevant articles were excluded. Enhancement P53 protein expression, reducing the expression of proteins P27, P21, NFκB expression and induction of apoptosis, inhibition of the PI3K/Akt pathway, and reduction of the level of acid phosphatase and lipid peroxidation are the most effective mechanisms of herbal plants that can inhibit cell cycle and proliferation. Common treatments such as radiotherapy and chemotherapy can cause some complications. According to results of this study, herbal extracts have antioxidant compounds that can induce apoptosis and inhibit cell proliferation by the investigated mechanisms.
Collapse
Affiliation(s)
- Wesam Kooti
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karo Servatyari
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Behzadifar
- 2 Student of Health Policy, Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Asadi-Samani
- 3 Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sadeghi
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bijan Nouri
- 4 Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hadi Zare Marzouni
- 5 Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
|
29
|
Asadi-Samani M, Kooti W, Aslani E, Shirzad H. A Systematic Review of Iran’s Medicinal Plants With Anticancer Effects. J Evid Based Complementary Altern Med 2015; 21:143-53. [DOI: 10.1177/2156587215600873] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/22/2015] [Indexed: 12/18/2022] Open
Abstract
Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants’ anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs.
Collapse
Affiliation(s)
- Majid Asadi-Samani
- Student Research Committee, Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Wesam Kooti
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Hedayatollah Shirzad
- Student Research Committee, Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
30
|
Amamou F, Nemmiche S, Meziane RK, Didi A, Yazit SM, Chabane-Sari D. Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats. Food Chem Toxicol 2015; 78:177-84. [DOI: 10.1016/j.fct.2015.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022]
|
31
|
Hung CM, Chang CC, Lin CW, Chen CC, Hsu YC. GADD45γ induces G2/M arrest in human pharynx and nasopharyngeal carcinoma cells by cucurbitacin E. Sci Rep 2014; 4:6454. [PMID: 25245461 PMCID: PMC4171705 DOI: 10.1038/srep06454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common form of malignant cancer, for which radiotherapy or chemotherapy are the main treatment methods. Cucurbitacin E (CuE) is a natural compound-based drug which from the climbing stem of Cucumic melo L (Guadi). Previously shown to be an antifeedant as well as a potent chemopreventive agent against several types of cancer. The present study, investigated anti-proliferation and cell cycle G2/M arrest induced by CuE in Detroit 562 cells (pharynx carcinoma) and HONE-1 (nasopharyngeal carcinoma) cells. Results indicate that the cytotoxicity is associated with accumulation in G2/M cell-cycle phases. CuE produced cell cycle arrest as well as the downregulation of cyclin B1 and CDC2 expression. In addition, treated cells with CuE and GADD45γ SiRNA that also coincided with GADD45γ gene activation in cell cycle arrest. Both effects increased proportionally with the dose of CuE; however, proliferation inhibition and mitosis delay was dependant on the amount of CuE treatment in the cancer cells.
Collapse
Affiliation(s)
- Chao-Ming Hung
- Department of General Surgery, E-Da Hospital, I-Shou University, 82445, Kaohsiung, Taiwan
| | - Chi-Chang Chang
- Department of Obstetrics & Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, 82445, Kaohsiung, Taiwan
| | - Chen-Wei Lin
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
| | - Chih-Chen Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, 82445, Kaohsiung, Taiwan
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
| |
Collapse
|
32
|
Cucurbitacin-I, a natural cell-permeable triterpenoid isolated from Cucurbitaceae, exerts potent anticancer effect in colon cancer. Chem Biol Interact 2014; 219:1-8. [DOI: 10.1016/j.cbi.2014.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022]
|
33
|
Vuong QV, Hirun S, Phillips PA, Chuen TLK, Bowyer MC, Goldsmith CD, Scarlett CJ. Fruit-derived phenolic compounds and pancreatic cancer: perspectives from Australian native fruits. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:227-242. [PMID: 24463158 DOI: 10.1016/j.jep.2013.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pancreatic cancer is a devastating cancer that presents late, is rapidly progressive and has current therapeutics with only limited efficacy. Bioactive compounds are ubiquitously present in fruits and numerous studies in vitro are addressing the activity of these compounds against pancreatic cancer, thus studies of specific bioactive compounds could lead to new anti-pancreatic cancer strategies. Australian native fruits have been used as foods and medicines by Australian Aboriginals for thousands of years, and preliminary studies have found these fruits to contain rich and diversified bioactive components with high antioxidant activity. Thus, Australian native fruits may possess key components for preventing or delaying the onset of tumorigenesis, or for the treatment of existing cancers, including pancreatic cancer. MATERIALS AND METHODS Numerous databases including PubMed, SciFinder, Web of Knowledge, Scopus, and Sciencedirect were analysed for correlations between bioactive components from fruits and pancreatic cancer, as well as studies concerning Australian native fruits. RESULTS In this review, we comprehensively highlight the proposed mechanisms of action of fruit bioactives as anti-cancer agents, update the potential anti-pancreatic cancer activity of various major classes of bioactive compounds derived from fruits, and discuss the existence of bioactive compounds identified from a selection Australian native fruits for future studies. CONCLUSION Bioactive compounds derived from fruits possess the potential for the discovery of new anti-pancreatic cancer strategies. Further, Australian native fruits are rich in polyphenols including some flora that contain unique phenolic compounds, thereby warranting further investigations into their anti-cancer properties.
Collapse
Affiliation(s)
- Q V Vuong
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - S Hirun
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - P A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - T L K Chuen
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - M C Bowyer
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - C D Goldsmith
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - C J Scarlett
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, Australia; School of Environmental and Life Sciences, University of Newcastle, NSW, Australia; Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| |
Collapse
|
34
|
Eissa TAF, Palomino OM, Carretero ME, Gómez-Serranillos MP. Ethnopharmacological study of medicinal plants used in the treatment of CNS disorders in Sinai Peninsula, Egypt. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:317-332. [PMID: 24184194 DOI: 10.1016/j.jep.2013.10.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To provide ethnopharmacological information on the use of medicinal plants for central nervous system (CNS) disorders in the Sinai Peninsula region (Egypt). To collect, analyze and evaluate the ethnobotanical knowledge about these medicinal plants in the Sinai Peninsula region with 61,000 km (2) and 379,000 inhabitants. METHODOLOGY Field work was concluded between March 2006 and May 2011, using semi-structured questionnaire with 700 informants (mean age: 59; 100% men) from 117 settlements of 17 Bedouin tribes. Transects walks in wild herbal plant collection areas and bibliographical review on the collected plants were also conducted. The Interview/ Inhabitant index (I/P), relative importance value of the species and informant consensus factor (FIC) were calculated. RESULTS More than 300 species were traditionally used in folk medicine in the Sinai Peninsula; 101 of these species belonging to 40 families were reported as useful in different CNS disorders. Only 5 species are endemic of the studied area. All different part plants were used, leaves and aerial parts being the most frequent. Most of the remedies were prepared as infusion or decoction, while oral administration was the most common way to be used. Gastrointestinal (67.3%) and respiratory disorders (42.57%) were also reported as frequently treated by Bedouins with herbal remedies. CONCLUSIONS Only a few species were found where the traditional use is supported by pharmacological studies (Acacia nilotica, Achillea fragrantissima, Ajuga iva or Mentha longifolia). No bibliographical references in the scientific literature were found for 22 species (21.78%); finally, several studies were published with different pharmacological activities than those provided by Bedouins.
Collapse
Affiliation(s)
- T A F Eissa
- Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - O M Palomino
- Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - M E Carretero
- Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - M P Gómez-Serranillos
- Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
35
|
Cucurbitacin E as inducer of cell death and apoptosis in human oral squamous cell carcinoma cell line SAS. Int J Mol Sci 2013; 14:17147-56. [PMID: 23965977 PMCID: PMC3759956 DOI: 10.3390/ijms140817147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022] Open
Abstract
Human oral squamous cell carcinoma (OSCC) is a common form of malignant cancer, for which radiotherapy or chemotherapy are the main treatment methods. Cucurbitacin E (CuE) is a natural compound previously shown to be an antifeedant as well as a potent chemopreventive agent against several types of cancer. The present study investigates anti-proliferation (using MTT assay, CuE demonstrated cytotoxic activity against SAS cell with IC50 values at 3.69 µM) and induced apoptosis of human oral squamous cell carcinoma SAS cells after 24 h treatment with CuE. Mitochondrial membrane potential (MMP) and caspase activity were studied and our results indicate that CuE inhibits cell proliferation as well as the activation of apoptois in SAS cells. Both effects increased in proportion to the dosage of CuE and apoptosis was induced via mitochondria- and caspase-dependent pathways. CuE can induce cell death by a mechanism that is not dependent on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of OSCC.
Collapse
|
36
|
Selective cytotoxic effects on human breast carcinoma of new methoxylated flavonoids from Euryops arabicus grown in Saudi Arabia. Eur J Med Chem 2013; 66:204-10. [DOI: 10.1016/j.ejmech.2013.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/13/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022]
|
37
|
Abstract
During the last decades a large number of cucurbitacins have been isolated from various plant species belonging to other plant families than Cucurbitaceae. Although the roots and the fruits of plant belong to these Cucurbitaceae species are very bitter, they have been used as folk medicines in some countries because of their wide spectrum of pharmacological activities such as anti-inflammation and anticancer effects. In the last ten years, cucurbitacins had been shown to inhibit proliferation and induced apoptosis utilizing a long array of in vitro and in vivo cancer cell models. Several molecular targets for cucurbitacins have been discovered, such as fibrous-actin, signal transducer and activator of transcription (STAT), cyclooxygenase-2, etc. This review aimed at elucidating the natural sources of some cucurbitacin compounds, their chemical structure and derivatives, physical properties, biological activities and mechanism by which they reduce the proliferation human cancer cells. This widens our armaments against a devastating disease that we are failing to face.
Collapse
|