1
|
Li XN, Li HX, Yang TN, Li XW, Huang YQ, Zhu SY, Li JL. Di-(2-ethylhexyl) phthalate induced developmental abnormalities of the ovary in quail (Coturnix japonica) via disruption of the hypothalamic-pituitary-ovarian axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140293. [PMID: 32610232 DOI: 10.1016/j.scitotenv.2020.140293] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
An increasing number of epidemiologic studies show that women have a special exposure profile to phthalates, and the exposures have attracted attention regarding their potential health hazards. Here, we developed a model for studying the ovarian action of di-(2-ethylhexyl) phthalate (DEHP) and its major metabolite monoethylhexyl phthalate (MEHP). In vivo, treatment with DEHP (250, 500, and 1000 mg kg^-1) induced decreased thickness of ovarian granulosa cell layer and mitochondrial damage in quail, caused oxidative stress, interfered with the transcription of hypothalamic-pituitary-ovarian axis (HPOA) steroid hormone-related factors (increased transcription of StAR, 3β-HSD, P450scc, and LH and decreased transcription of 17β-HSD, P450arom, FSH, and ERβ), and blocked the secretion of steroid hormones (decreased FSH, E2, and T levels and increased LH, P, and PRL levels). In vitro, granulosa cells were cultured with MEHP (50, 100, and 200 μM), activator of PPARγ (rosiglitazone, 50 μM), or antagonist of PPARγ (GW9662, 10 μM) for 24 h and gene and protein expression were analyzed by real time RT-PCR and western blot. Rosiglitazone, like MEHP, significantly decreased mRNA and protein levels of P450arom. Antagonist GW9662 partially blocked the suppression of P450arom by MEHP, suggesting that MEHP acts through PPARγ, but not exclusively. Our model shows that MEHP acts on granulosa cells in quail by stimulating PPARs, which leads to decreased gene and protein expression of P450arom. Therefore, the environmental endocrine disruptor DEHP and its major metabolite MEHP act through a receptor-mediated signaling pathway to inhibit the production of estradiol, interfere with the modulation of HPOA, suppress the synthesis of sex hormones, and cause sex hormone secretion disorders, resulting in severe toxicity in the female reproductive system. A framework for an adverse outcome pathway of DEHP/MEHP-induced ovarian toxicity was constructed, which can facilitate an improved understanding of the mechanism of female reproductive toxicity.
Collapse
Affiliation(s)
- Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui-Xin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Jin Y, Zhang Q, Pan JX, Wang FF, Qu F. The effects of di(2-ethylhexyl) phthalate exposure in women with polycystic ovary syndrome undergoing in vitro fertilization. J Int Med Res 2019; 47:6278-6293. [PMID: 31709857 PMCID: PMC7045688 DOI: 10.1177/0300060519876467] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objectives Di(2-ethylhexyl) phthalate (DEHP) is a common endocrine-disrupting chemical,
which has potential reproductive toxicity. This study aimed to explore the
effects of DEHP exposure in women with polycystic ovary syndrome (PCOS)
undergoing in vitro fertilization. Methods In this case-control study, DEHP levels in follicular fluid (FF) of women
with PCOS (n = 56) and controls (n = 51) were measured. The in
vitro effects of DEHP exposure on primary-cultured human
granulosa cells (GCs) and a steroidogenic human granulosa-like tumor cell
line (KGN cells) were analyzed. Results Concentrations of DEHP in FF were significantly higher in women with PCOS
than in controls. The clinical pregnancy rate was significantly lower in
women with PCOS with high levels of DEHP than in controls. The levels of
androgens produced by human GCs were significantly increased following DEHP
exposure. Compared with controls, DEHP-treated human GCs and KGN cells
showed significantly lower viability, cell cycle arrest, higher apoptosis,
and altered expression of apoptosis-related genes. Conclusion Women with PCOS are exposed to increased levels of DEHP in follicles, which
may be associated with pregnancy loss following in vitro
fertilization. DEHP may disrupt steroid production, balance in cellular
proliferation, and apoptosis in human granulosa cells.
Collapse
Affiliation(s)
- Yue Jin
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie-Xue Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang-Fang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Choi SM, Lim DS, Kim MK, Yoon S, Kacew S, Kim HS, Lee BM. Inhibition of di(2-ethylhexyl) phthalate (DEHP)-induced endocrine disruption by co-treatment of vitamins C and E and their mechanism of action. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:748-760. [PMID: 29842840 DOI: 10.1080/15287394.2018.1473262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The endocrine disrupting actions of di(2-ethylhexyl) phthalate (DEHP) on testicular functions are postulated to involve excess free radical generation. Thus the aim of this study was to examine the ability of antioxidant vitamins C and E to prevent DEHP-induced testicular disruption in male Sprague-Dawley (SD) rats. SD male rats were administered DEHP alone or DEHP with vitamin C and/or vitamin E for 30 days. DEHP alone increased the levels of testosterone (T) and reduced estradiol (E2) concentrations. Supplementation with antioxidant vitamins diminished or restored serum T levels noted in DEHP-treated rats to control values. In contrast vitamins C and E increased E2 levels to control in rats administered DEHP. Antioxidants significantly improved the decreased testicular levels of reduced glutathione and activity of superoxide dismutase compared to DEHP-treatment alone. Co-treatment of vitamins C and E also markedly improved the reduced epididymal sperm head counts and elevated levels of malondialdehyde (MDA) or 8-hydroxydeoxyguanosine (8-OHdG) induced by DEHP treatment. These results support the concept that the adverse actions of DEHP may be related to increased free radical generation while co-treatment with vitamins C and E significantly blocked the actions of DEHP on male testicular functions.
Collapse
Affiliation(s)
- Seul Min Choi
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Duck Soo Lim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Sungpil Yoon
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Sam Kacew
- b McLaughlin Centre for Population Health Risk Assessment , University of Ottawa , Ottawa , ON , Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| |
Collapse
|
4
|
Nassan FL, Coull BA, Skakkebaek NE, Andersson AM, Williams MA, Mínguez-Alarcón L, Krawetz SA, Hall JE, Hait EJ, Korzenik JR, Ford JB, Moss AC, Hauser R. A crossover-crossback prospective study of dibutyl-phthalate exposure from mesalamine medications and serum reproductive hormones in men. ENVIRONMENTAL RESEARCH 2018; 160:121-131. [PMID: 28978458 PMCID: PMC5705343 DOI: 10.1016/j.envres.2017.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Phthalates, such as dibutyl phthalate (DBP), are endocrine disruptors used in some medication coatings e.g., mesalamine to treat inflammatory bowel disease (IBD). OBJECTIVES Taking advantage of different mesalamine formulations with/without DBP, we assessed whether DBP from mesalamine (>1000x background) altered serum hormones. METHODS Men (N=73) with IBD participated in a crossover-crossback prospective study and provided up to 6 serum samples (2:baseline, 2:crossover, 2:crossback). Men on non-DBP mesalamine (background) at baseline crossed-over for 4 months to DBP-mesalamine (high) and then crossed-back for 4 months to non-DBP mesalamine (B1HB2-arm) and vice versa for men on DBP-mesalamine at baseline (H1BH2-arm). We divided H1BH2-arm at the median (H1<3yrs or H1≥3yrs). We estimated crossover and crossback % changes in serum reproductive hormones using multivariable linear mixed effect models. RESULTS When B1HB2-arm (26 men,134 samples) crossed-over, luteinizing hormone decreased 13.9% (95% confidence interval(CI): -23.6,-3.0) and testosterone, inhibin-B, and follicle-stimulating hormone (FSH) marginally decreased; after crossback all increased 8-14%. H1BH2-arm, H1≥3yrs (25 men,107samples) had no changes at crossover or crossback whereas in H1BH2-arm,H1<3yrs (22 men,100 samples) after crossover, inhibin-B increased 13.2% (CI: 4.2,22.9), FSH decreased 9.9% (CI: -17.9,-1.1) and after crossback, inhibin-B further increased 11.3%, and FSH marginally increased. CONCLUSIONS High-DBP exposure may disrupt pituitary-gonadal hormones that largely reversed after exposure removal, but only in men with no or short previous high-exposure history. Paradoxically, men with longer duration of high-DBP exposure, exposure removal did not change hormone levels, suggesting that long-term high-DBP exposure may alter the pituitary-gonadal axis and make it insensitive to exposure changes.
Collapse
Affiliation(s)
- Feiby L Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Niels E Skakkebaek
- University Department of Growth and Reproduction, and EDMaRC, Rigshospitalet, Copenhagen, Denmark
| | - Anna-Maria Andersson
- University Department of Growth and Reproduction, and EDMaRC, Rigshospitalet, Copenhagen, Denmark
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Stephen A Krawetz
- Department of Obstetrics & Gynecology, Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, USA
| | - Janet E Hall
- Division of Intramural Research, NIH/NIEHS, NC, USA
| | - Elizabeth J Hait
- Division of Gastroenterology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Joshua R Korzenik
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alan C Moss
- Center for Inflammatory Bowel Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Li Y, Liu X, Niu L, Li Q. Proteomics Analysis Reveals an Important Role for the PPAR Signaling Pathway in DBDCT-Induced Hepatotoxicity Mechanisms. Molecules 2017; 22:E1113. [PMID: 28684700 PMCID: PMC6152083 DOI: 10.3390/molecules22071113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
A patented organotin di-n-butyl-di-(4-chlorobenzohydroxamato)tin (DBDCT) with high a antitumor activity was designed, however, its antitumor and toxic mechanisms have not yet been clearly illustrated. Hepatic proteins of DBDCT-treated rats were identified and analyzed using LC-MS/MS with label-free quantitative technology. In total, 149 differentially expressed proteins were successfully identified. Five protein and mRNA expressions were involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, including a scavenger receptor (CD36), adipocyte fatty acid binding protein 4 (FABP4), enoyl-CoA hydratase (EHHADH), acetyl-CoA acyltransferase 1 (ACAA1), and phosphoenolpyruvate carboxykinase (PEPCK) in DBDCT-treated Rat Liver (BRL) cells. PPAR-α and PPAR-λ were also significantly decreased at both protein and mRNA levels. Furthermore, compared with the DBDCT treatment group, a special blocking agent of PPAR-λ T0070907 was used to evaluate the relationship between PPAR-λ and its downstream genes. Our studies indicated that DBDCT may serve as a modulator of PPAR-λ, further up-regulating CD36, FABP4 and EHHADH on the PPAR signal pathway.
Collapse
Affiliation(s)
- Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030001, China.
| | - Xinxin Liu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Lin Niu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030001, China.
| |
Collapse
|
6
|
Ling J, Lopez-Dee ZP, Cottell C, Wolfe L, Nye D. Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity. PLoS One 2016; 11:e0167914. [PMID: 27992464 PMCID: PMC5167351 DOI: 10.1371/journal.pone.0167914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022] Open
Abstract
Phthalates are a group of plasticizers that are widely used in many consumer products and medical devices, thus generating a huge burden to human health. Phthalates have been known to cause a number of developmental and reproductive disorders functioning as endocrine modulators. They are also involved in carcinogenesis with mechanisms less understood. To further understand the molecular mechanisms of phthalate toxicity, in this study we reported a new effect of phthalates on mRNA translation/protein synthesis, a key regulatory step of gene expression. Butyl benzyl phthalate (BBP) was found to directly inhibit mRNA translation in vitro but showed a complicated pattern of affecting mRNA translation in cells. In human kidney embryonic cell (HEK-293T), BBP increased cap-dependent mRNA translation at lower concentrations but showed inhibitory effect at higher concentrations. Cap-independent translation was not affected. On the other hand, mono (2-ethylhexyl) phthalate (MEHP) as a major metabolite of another important phthalate di (2-ethylhexyl) phthalate (DEHP) inhibited both can-dependent and -independent mRNA translation in vivo. In contrast, BBP and MEHP exhibited an overall promoting effect on mRNA translation in cancer cells. Mechanistic studies identified that the level and phosphorylation of eIF4E-BP (eIF4E binding protein) and the amount of eIF4GI in eIF4F complex were altered in accordance with the effect of BBP on translation. BBP was also identified to directly bind to eIF4E, providing a further mechanism underlying the regulation of mRNA by phthalate. At the cellular level BBP inhibited normal cell growth but slightly promoted cancer cells (HT29) growth. Overall, this study provides the first evidence that phthalates can directly regulate mRNA translation as a novel mechanism to mediate their biological toxicities.
Collapse
Affiliation(s)
- Jun Ling
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
- * E-mail:
| | - Zenaida P. Lopez-Dee
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Colby Cottell
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
- Department of Sciences, Marywood University, Scranton, Pennsylvania, United States of America
| | - Laura Wolfe
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
- Department of Sciences, Marywood University, Scranton, Pennsylvania, United States of America
| | - Derek Nye
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| |
Collapse
|
7
|
Guo M, Lai L, Zong T, Lin Y, Yang B, Zhang L, Li M, Kuang H. Exposure to di(2-ethylhexyl) phthalate inhibits luteal function via dysregulation of CD31 and prostaglandin F2alpha in pregnant mice. Reprod Biol Endocrinol 2015; 13:11. [PMID: 25888850 PMCID: PMC4351920 DOI: 10.1186/s12958-015-0013-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/23/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Di(2-ethylhexyl) phthalate (DEHP) exposure reduces embryo implantations, increases embryonic loss, and decreases fetal body weights. However, whether it is associated with the alteration of luteal function remains unknown. Thus, our aim in this study was to explore the effect and mechanism of DEHP on luteal function in pregnant mice in vivo. METHODS Mice were administered DEHP by gavage at 125, 250, 500 mg/kg/day from gestational days (GD) 1 to 9 or 13. Levels of serum progesterone and estradiol were measured by radioimmunoassay. The numbers and sizes of corpora lutea were calculated by ovarian histomorphology. Steroidogenic enzymes were assessed by qRT-PCR. CD31 protein was detected by immunocytochemistry, and prostaglandin F2alpha (PGF2alpha) levels were evaluated by enzyme immunoassay. RESULTS Treatment with DEHP significantly inhibited progesterone secretion in pregnant mice in a dose-dependent manner but did not inhibit estradiol production on GD 9 and 13. Treatment also showed concomitant decreases in transcript levels for key steroidogenic enzymes (CYP11A, 3β-HSD, and StAR) on GD 13. Furthermore, DEHP administration significantly reduced the numbers and sizes of corpora lutea on GD 13. No significant changes in the ratio of ovary weight vs. body weight were observed between the control group and treated animals on GD 9 and 13. In addition, treatment with DEHP significantly inhibited CD31 expression of corpora lutea, whereas plasma PGF2alpha levels in DEHP treatment groups were significantly higher compared with the control groups on GD 9 and 13. CONCLUSIONS The results show DEHP significantly inhibits luteal function of pregnant mice in vivo, with a mechanism that seems to involve the down-regulation of progesterone and steroidogenic enzymes message RNA, the decrease in CD31 expression, and the increase in PGF2alpha secretion.
Collapse
Affiliation(s)
- Meijun Guo
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Lidan Lai
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Teng Zong
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Yan Lin
- Department of Obstetrics and Gynecology, Hospital of Jixi Province People, Nanchang, Jiangxi, China.
| | - Bei Yang
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Lu Zhang
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Mo Li
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| | - Haibin Kuang
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Zhang XF, Zhang T, Han Z, Liu JC, Liu YP, Ma JY, Li L, Shen W. Transgenerational inheritance of ovarian development deficiency induced by maternal diethylhexyl phthalate exposure. Reprod Fertil Dev 2015; 27:1213-21. [DOI: 10.1071/rd14113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022] Open
Abstract
Diethylhexyl phthalate (DEHP) is a widely used industrial additive for increasing plastic flexibility. It disrupts the physiological functions of endogenous hormones and induces abnormal development of mammals. The objectives of the present study were to evaluate the effects of DEHP exposure on ovarian development of pregnant mice and whether the effects are inheritable. We found that the synthesis of oestradiol in pregnant mice after DEHP exposure was significantly decreased, and that the first meiotic progression of female fetal germ cells was delayed. Furthermore, the DNA methylation level of Stra8 was increased and the expression levels of Stra8 were significantly decreased. An accelerated rate of follicle recruitment in F1 mice was responsible for the depletion of the primordial-follicle pool. Maternal DEHP exposure also significantly accelerated the recruitment of primordial follicles in F2 mice. In conclusion, our results indicated that maternal DEHP exposure induced ovarian development deficiency, which was transgenerational in mice.
Collapse
|
9
|
Wang DC, Chen TJ, Lin ML, Jhong YC, Chen SC. Exercise prevents the increased anxiety-like behavior in lactational di-(2-ethylhexyl) phthalate-exposed female rats in late adolescence by improving the regulation of hypothalamus-pituitary-adrenal axis. Horm Behav 2014; 66:674-84. [PMID: 25251977 DOI: 10.1016/j.yhbeh.2014.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
Abstract
Both the detrimental effects of early life adversity and the beneficial effects of exercise on the hypothalamic-pituitary-adrenal (HPA) axis have been reported. Early life exposure to di-(2-ethylhexyl)-phthalate (DEHP) may impair the development of endocrine system. In this study, we investigated the effects of lactational DEHP exposure on stress responses in late adolescent female rats and examined the protective role of treadmill running. Sprague-Dawley dams were fed with DEHP (10mg/kg per day) or vehicle during lactation. After weaning, the female offspring rats were trained to exercise on a treadmill for 5 weeks and then stressed by exploring on an elevated plus maze. The activities of HPA axis were evaluated by measuring the plasma levels of ACTH and corticosterone, the expressions of adrenal enzymes cholesterol side-chain cleavage enzyme (CYP11A1) and cytochrome P-450 11β-hydroxylase (CYP11B1), and the expression of hypothalamic glucocorticoid receptors (GR). The results demonstrate that DEHP-exposed rats exhibited enhanced anxiety-like behaviors. Increased hypothalamic GR and plasma ACTH levels, but decreased adrenal CYP11A1 and corticosterone levels, were observed in DEHP-exposed animals under stressed condition. Importantly, in DEHP-exposed animals, exercise during childhood-adolescence reduced anxiety-like behaviors by normalizing stress-induced alterations in ACTH level and adrenal CYP11A1 expression. The findings of this study suggest that treadmill running may provide beneficial effects on ameliorating the dysregulation of HPA axis in lactational DEHP-exposed adolescent female rats.
Collapse
Affiliation(s)
- Dean-Chuan Wang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Tsan-Ju Chen
- Department of Physiology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Ming-Lu Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yue-Cih Jhong
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Shih-Chieh Chen
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|