1
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
Wang J, Behl T, Rana T, Sehgal A, Wal P, Saxena B, Yadav S, Mohan S, Anwer MK, Chigurupati S, Zaheer I, Shen B, Singla RK. Exploring the pathophysiological influence of heme oxygenase-1 on neuroinflammation and depression: A study of phytotherapeutic-based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155466. [PMID: 38461764 DOI: 10.1016/j.phymed.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Computer Science and Information Technology, University of A Coruña, A Coruña, Spain
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Punjab, India; Government Pharmacy College, Seraj-175123, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar-141104, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah-51452, Kingdom of Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai-602105, India
| | - Imran Zaheer
- Department of Pharmacology, College of Medicine, (Al-Dawadmi Campus), Shaqra University, Al-Dawadmi, 11961, Kingdom of Saudi Arabia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| |
Collapse
|
3
|
Huang LJ, Lan JX, Wang JH, Huang H, Lu K, Zhou ZN, Xin SY, Zhang ZY, Wang JY, Dai P, Chen XM, Hou W. Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomed Pharmacother 2024; 173:116406. [PMID: 38460366 DOI: 10.1016/j.biopha.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Sanguinarine is a quaternary ammonium benzophenanthine alkaloid found in traditional herbs such as Chelidonium, Corydalis, Sanguinarum, and Borovula. It has been proven to possess broad-spectrum biological activities, such as antitumor, anti-inflammatory, antiosteoporosis, neuroprotective, and antipathogenic microorganism activities. In this paper, recent progress on the biological activity and mechanism of action of sanguinarine and its derivatives over the past ten years is reviewed. The results showed that the biological activities of hematarginine and its derivatives are related mainly to the JAK/STAT, PI3K/Akt/mTOR, NF-κB, TGF-β, MAPK and Wnt/β-catenin signaling pathways. The limitations of using sanguinarine in clinical application are also discussed, and the research prospects of this subject are outlined. In general, sanguinarine, a natural medicine, has many pharmacological effects, but its toxicity and safety in clinical application still need to be further studied. This review provides useful information for the development of sanguinarine-based bioactive agents.
Collapse
Affiliation(s)
- Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Hua Wang
- Ji'an Central People's Hospital (Shanghai East Hospital Ji'an Hospital), Ji'an, Jiangxi 343100, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Kuo Lu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan 450018, PR China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jing-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Ping Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Xiao-Mei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
4
|
Li J, Wu Y, Dong S, Yu Y, Wu Y, Xiang B, Li Q. Research Progress on Neuroprotective Effects of Isoquinoline Alkaloids. Molecules 2023; 28:4797. [PMID: 37375352 DOI: 10.3390/molecules28124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal injury and apoptosis are important causes of the occurrence and development of many neurodegenerative diseases, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs, it is of great significance to alleviate the symptoms and improve the prognosis of these diseases. Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These substances have a wide range of pharmacological effects and significant activity. Although some studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and summarizes their common characteristics. This information can serve as a reference for further research on the neuroprotective effects of isoquinoline alkaloids.
Collapse
Affiliation(s)
- Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yarong Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Shuze Dong
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Ye Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yuhao Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Benhan Xiang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| |
Collapse
|
5
|
Lin XL, Shi YN, Cao YL, Tan X, Zeng YL, Luo ST, Li YM, Qin L, Xia BH, Fu RG, Lin LM, Li K, Cao D, Zeng JG, Liao DF. Sanguinarine protects against indomethacin-induced small intestine injury in rats by regulating the Nrf2/NF-κB pathways. Front Pharmacol 2022; 13:960140. [PMID: 36304153 PMCID: PMC9593053 DOI: 10.3389/fphar.2022.960140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1β, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.
Collapse
Affiliation(s)
- Xiu-lian Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-ning Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu-ling Cao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Tan
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-ling Zeng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shi-teng Luo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-mei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bo-hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong-geng Fu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li-mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kai Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| | - Jian-guo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| | - Duan-fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| |
Collapse
|
6
|
Wang L, Wang F, Wang Y, Liu Y, Liu D. GSK-3 β RNAi Lentivirus Affects Neuronal Damage and Nuclear Factor E2-Related Factor 2 (Nrf2) Expression in Cerebral Infarction Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the effect of GSK-3β RNAi lentivirus on neuronal damage and Nrf2 level in rats with cerebral infarction. 40 rats were assigned into sham group, CI group, Vector group and GSK-3β RNAi group followed by analysis of cell damage and oxidative stress,
neurological scores, cerebral infarction volume, and brain water content as well as brain morphology by H&E staining and Nrf2 protein level by Western blot. Compared with sham group, GSK-3β mRNA in neurons of CI group and Vector group was significantly elevated (P <
0.05) with reduced level in GSK-3β RNAi group (P < 0.05); 3 hours after surgery, there was no change in neuroethology scores of rats in CI group, Vector group and GSK-3β RNAi group (P > 0.05). While 1 and 3 days later, the scores of rats were significantly
improved (P < 0.05) and brain water content was reduced in GSK-3β RNAi group (P < 0.05) without difference between CI group and Vector group (P > 0.05). Compared with sham group, infarct size in CI group and Vector group was increased (P <
0.05) and reduced in GSK-3β RNAi group (P < 0.05) without difference between CI group and Vector group (P > 0.05). Meanwhile, CI group and Vector group showed significantly downregulated Nrf2, Srx1 and Trx1 proteins (P < 0.05), which were increased
in GSK-3β RNAi group (P < 0.05). In conclusion, GSK-3β RNAi lentivirus can promote the expression of Nrf2 and exert an inhibitory effect on neurons of rats with cerebral infarction, therefore protecting brain tissue.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161000, China
| | - Feng Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161000, China
| | - Yue Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161000, China
| | - Yuxiang Liu
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161000, China
| | - Deshui Liu
- Qiqihar Medical University, Research Institute of Medicine & Pharmacy, Qiqihar, Heilongjiang, 161000, China
| |
Collapse
|
7
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. The key roles of organelles and ferroptosis in Alzheimer's disease. J Neurosci Res 2022; 100:1257-1280. [PMID: 35293012 DOI: 10.1002/jnr.25033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, is a striking global health problem. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation products and the accumulation of lethal reactive oxygen species. Strict regulation of iron metabolism is essential to ensure neuronal homeostasis. Excess and deficiency of iron are both associated with neurodegeneration. Studies have shown that oxidative stress caused by cerebral iron metabolism disorders in the body is involved in the process of AD, ferroptosis may play an important role in the pathogenesis of AD, and regulating ferroptosis is expected to be a new direction for the treatment of AD. Various organelles are closely related to ferroptosis: mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosome are involved in the regulation of ferroptosis from the aspects of iron metabolism and redox imbalance. In this review, the relationship between AD and the dysfunction of organelles (including mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus) and the role of organelles in ferroptosis of AD were reviewed to provide insights for understanding the relationship between organelles and ferroptosis in AD and the treatment of AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
8
|
Ko J, Jang S, Kwon W, Kim SY, Jang S, Kim E, Ji YR, Park S, Kim MO, Choi SK, Cho DH, Lee HS, Lim SG, Ryoo ZY. Protective Effect of GIP against Monosodium Glutamate-Induced Ferroptosis in Mouse Hippocampal HT-22 Cells through the MAPK Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11020189. [PMID: 35204073 PMCID: PMC8868324 DOI: 10.3390/antiox11020189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
The effect of glucose-dependent insulinotropic polypeptide (GIP) on cells under oxidative stress induced by glutamate, a neurotransmitter, and the underlying molecular mechanisms were assessed in the present study. We found that in the pre-treatment of HT-22 cells with glutamate in a dose-dependent manner, intracellular ROS were excessively generated, and additional cell damage occurred in the form of lipid peroxidation. The neurotoxicity caused by excessive glutamate was found to be ferroptosis and not apoptosis. Other factors (GPx-4, Nrf2, Nox1 and Hspb1) involved in ferroptosis were also identified. In other words, it was confirmed that GIP increased the activity of sub-signalling molecules in the process of suppressing ferroptosis as an antioxidant and maintained a stable cell cycle even under glutamate-induced neurotoxicity. At the same time, in HT-22 cells exposed to ferroptosis as a result of excessive glutamate accumulation, GIP sustained cell viability by activating the mitogen-activated protein kinase (MAPK) signalling pathway. These results suggest that the overexpression of the GIP gene increases cell viability by regulating mechanisms related to cytotoxicity and reactive oxygen species production in hippocampal neuronal cell lines.
Collapse
Affiliation(s)
- Jiwon Ko
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Soyoung Jang
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Wookbong Kwon
- Core Protein Resources Center, DGIST, Daegu 42988, Korea; (W.K.); (S.-K.C.)
- Division of Biotechnology, DGIST, Daegu 42988, Korea
| | - Si-Yong Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Soyeon Jang
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Korea; (E.K.); (M.-O.K.)
| | - Young-Rae Ji
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu 42988, Korea;
| | - Myoung-Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Korea; (E.K.); (M.-O.K.)
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu 42988, Korea; (W.K.); (S.-K.C.)
- Division of Biotechnology, DGIST, Daegu 42988, Korea
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 42988, Korea
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Su-Geun Lim
- School of Life Science, Kyungpook National University, Daegu 42988, Korea;
- Correspondence: (S.-G.L.); (Z.-Y.R.)
| | - Zae-Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Correspondence: (S.-G.L.); (Z.-Y.R.)
| |
Collapse
|
9
|
Liang Z, Currais A, Soriano-Castell D, Schubert D, Maher P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol Ther 2021; 221:107749. [PMID: 33227325 PMCID: PMC8084865 DOI: 10.1016/j.pharmthera.2020.107749] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are the primary source of energy production in the brain thereby supporting most of its activity. However, mitochondria become inefficient and dysfunctional with age and to a greater extent in neurological disorders. Thus, mitochondria represent an emerging drug target for many age-associated neurological disorders. This review summarizes recent advances (covering from 2010 to May 2020) in the use of natural products from plant, animal, and microbial sources as potential neuroprotective agents to restore mitochondrial function. Natural products from diverse classes of chemical structures are discussed and organized according to their mechanism of action on mitochondria in terms of modulation of biogenesis, dynamics, bioenergetics, calcium homeostasis, and membrane potential, as well as inhibition of the oxytosis/ferroptosis pathway. This analysis emphasizes the significant value of natural products for mitochondrial pharmacology as well as the opportunities and challenges for the discovery and development of future neurotherapeutics.
Collapse
Affiliation(s)
- Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| |
Collapse
|
10
|
Ghauri MA, Su Q, Ullah A, Wang J, Sarwar A, Wu Q, Zhang D, Zhang Y. Sanguinarine impedes metastasis and causes inversion of epithelial to mesenchymal transition in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153500. [PMID: 33626427 DOI: 10.1016/j.phymed.2021.153500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A large number of breast cancer patients perishes due to metastasis instead of primary tumor, but molecular mechanisms contributing towards cancer metastasis remain poorly understood. Therefore, prompting development of novel treatment is inevitable. A vast variety of plant derived natural substance possesses several therapeutically active constituents, e.g. alkaloids, flavonoids, tannins, resins, terpenoids etc. that exhibit various pharmacological properties e.g. anti-inflammatory, anti-microbial and anti-cancer properties. Sanguinarine (SAN) alkaloid found its place among such naturally occurring substances that exerts several pharmacological activities, including anti-cancer effects. PURPOSE Until now, role of SAN not only against epithelial-mesenchymal transition (EMT) but also against metastasis progression in breast cancer remains indistinct. Thus, aim of the present study was to investigate effects of SAN on EMT process and cancer metastasis in animal model. METHODS MTT assay was performed to assess SAN effects on proliferation in breast cancer. Scratch assay was performed to evaluate effects of SAN on migration in breast cancer. Colony formation assay was performed to determine effects of SAN on colonization characteristics of breast cancer. Western blotting was performed to measure EMT regulating protein expression as well as major pathway protein expression induced against TGF-β treatment in breast cancer. Tail vein method of injecting breast cancer cells in bulb/c mice was conducted to study metastasis progression and thereafter assessing effects of SAN against metastasis in mice. RESULTS In vivo results: MTT assay performed, demonstrated dose dependent inhibition of cell proliferation in breast cancer. Scratch assay results showed, SAN played a major role as migration inhibitor in estrogen receptor positive (ER+) breast cancer. Colony forming assay results demonstrated that SAN constrains ability of breast cancer to develop into well-defined colonies. Western blotting results for EMT regulating protein expression, after TGF-β treatment showed, SAN inhibited cadherin switch in ER+ breast cancer. Moreover, expression of pathway proteins involved in EMT process after TGF-β treatment i.e. Smad, PI3K/Akt and MAP kinase were significantly masked against SAN treatment. IN VIVO RESULTS The appearance of metastatic nodules in lung tissues of mice model, helps to study the effects of SAN against metastasis in bulb/c mice. The obtained results have confirmed that SAN impeded lung metastasis. The macroscopic examination has confirmed metastasis inhibitory role of SAN in breast cancer. The Hematoxylin and eosin (H&E) staining results further advocate anti-metastatic characteristics of SAN, presented by fewer metastatic nodule and lesions appearance in SAN treated mice compared to untreated metastasis mice. CONCLUSION In summary, SAN displayed prominent anti-metastatic effects in animal model and anti-proliferation effects together with significant inhibitory potential on EMT regulating protein expression against TGF-β treatment in ER+ breast cancer. So, overall findings of our study highlighted the pre-clinical significance of SAN in animal model therefore, further studies in humans as a part of clinical trial will be needed to establish pharmacokinetics and other effects of SAN, so that it can be a potential candidate for future treatment of metastatic breast cancer (MBC).
Collapse
Affiliation(s)
- Mohsin Ahmad Ghauri
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Asmat Ullah
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Jingjing Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Qing Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China.
| |
Collapse
|
11
|
Ni G, Hao X, Cai X, Qin J, Zhou L, Kwan P, Chen Z. SiRNA-mediated ankyrin-G silence modulates the expression of voltage-gated Na channels in murine hippocampal HT22 cells. ACTA EPILEPTOLOGICA 2019. [DOI: 10.1186/s42494-019-0004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Basu P, Kumar GS. Sanguinarine and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:155-172. [PMID: 27671816 DOI: 10.1007/978-3-319-41334-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of natural products derived from plants as medicines precedes even the recorded human history. In the past few years there were renewed interests in developing natural compounds and understanding their target specificity for drug development for many devastating human diseases. This has been possible due to remarkable advancements in the development of sensitive chemistry and biology tools. Sanguinarine is a benzophenanthridine alkaloid derived from rhizomes of the plant species Sanguinaria canadensis. The alkaloid can exist in the cationic iminium and neutral alkanolamine forms. Sanguinarine is an excellent DNA and RNA intercalator where only the iminium ion binds. Both forms of the alkaloid, however, shows binding to functional proteins like serum albumins, lysozyme and hemoglobin. The molecule is endowed with remarkable biological activities and large number of studies on its various activities has been published potentiating its development as a therapeutic agent particularly for chronic human diseases like cancer, asthma, etc. In this article, we review the properties of this natural alkaloid, and its diverse medicinal applications in relation to how it modulates cell death signaling pathways and induce apoptosis through different ways, its utility as a therapeutic agent for chronic diseases and its biological effects in animal and human models. These data may be useful to understand the therapeutic potential of this important and highly abundant alkaloid that may aid in the development of sanguinarine-based therapeutic agents with high efficacy and specificity.
Collapse
Affiliation(s)
- Pritha Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
13
|
Huang X, Liao W, Huang Y, Jiang M, Chen J, Wang M, Lin H, Guan S, Liu J. Neuroprotective effect of dual specificity phosphatase 6 against glutamate-induced cytotoxicity in mouse hippocampal neurons. Biomed Pharmacother 2017; 91:385-392. [PMID: 28475917 DOI: 10.1016/j.biopha.2017.04.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/01/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022] Open
Abstract
Dual specificity phosphatase 6 (DUSP6), a member of the dual specificity protein phosphatase subfamily, can inactivate ERK1/2. However, its possible role in glutamate-induced oxidative cytotoxicity effects is not clear.Here, we aimed to investigate whether DUSP6 was neuroprotective against glutamate-induced cytotoxicity in HT22 mouse hippocampal cells and primary cultured hippocampal neurons (pc-HNeu). HT22 and pc-HNeu cells were treated with varying concentrations of glutamate (from 0.05mM to 5.0mM) and DUSP6 protein expression were detected by western blotting. DUSP6-overexpressing HT22 and pc-HNeu cells were generated by transfection with DUSP6-overexpressing plasmid. The effects of DUSP6 overexpression on glutamate-induced cytotoxicity, cell death, cell apoptosis, and cell autophagy were determined by cell proliferation assays, flow cytometry, transmission electron microscopy, and western blotting. Glutamate treatment from 0.5mM to 5.0mM downregulated DUSP6 protein expression in both HT22 and pc-HNeu cells. DUSP6 overexpression ameliorated glutamate-induced cell death, apoptosis, and autophagy in both HT22 and pc-HNeu cells. Furthermore, ERK1/2 phosphorylation was decreased by DUSP6 overexpression. In conclusion, DUSP6 has neuroprotective effects against glutamate-induced cytotoxicity in HT22 and pc-HNeu cells. Targeting DUSP6 may be a useful strategy to prevent neuronal death in neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China
| | - Yihong Huang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Mujun Jiang
- Department of Neurology, The First Affiliated Hospital, Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui 233004, PR China
| | - Jianjun Chen
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Mingxia Wang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Han Lin
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Shaobing Guan
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China.
| |
Collapse
|
14
|
Tian X, Gao L, An L, Jiang X, Bai J, Huang J, Meng W, Zhao Q. Pretreatment of MQA, a caffeoylquinic acid derivative compound, protects against H2O2-induced oxidative stress in SH-SY5Y cells. Neurol Res 2016; 38:1079-1087. [PMID: 27800716 DOI: 10.1080/01616412.2016.1245030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xing Tian
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China
- Department of Pharmacy, Shihezi University, Shihezi, China
| | - Lingyue Gao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Li An
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaowen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Junpeng Bai
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Huang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Weihong Meng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China
| |
Collapse
|
15
|
Wang B, Liu H, Yue L, Li X, Zhao L, Yang X, Wang X, Yang Y, Qu Y. Neuroprotective effects of pterostilbene against oxidative stress injury: Involvement of nuclear factor erythroid 2-related factor 2 pathway. Brain Res 2016; 1643:70-9. [DOI: 10.1016/j.brainres.2016.04.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
16
|
Gartanin Protects Neurons against Glutamate-Induced Cell Death in HT22 Cells: Independence of Nrf-2 but Involvement of HO-1 and AMPK. Neurochem Res 2016; 41:2267-77. [DOI: 10.1007/s11064-016-1941-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/18/2023]
|
17
|
Singh SP, Chhunchha B, Fatma N, Kubo E, Singh SP, Singh DP. Delivery of a protein transduction domain-mediated Prdx6 protein ameliorates oxidative stress-induced injury in human and mouse neuronal cells. Am J Physiol Cell Physiol 2015; 310:C1-16. [PMID: 26447207 DOI: 10.1152/ajpcell.00229.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023]
Abstract
Oxidative stress or reduced expression of naturally occurring antioxidants during aging has been identified as a major culprit in neuronal cell/tissue degeneration. Peroxiredoxin (Prdx) 6, a protective protein with GSH peroxidase and acidic calcium-independent phospholipase A2 activities, acts as a rheostat in regulating cellular physiology by clearing reactive oxygen species (ROS) and thereby optimizing gene regulation. We found that under stress, the neuronal cells displayed reduced expression of Prdx6 protein and mRNA with increased levels of ROS, and the cells subsequently underwent apoptosis. Using Prdx6 fused to TAT transduction domain, we showed evidence that Prdx6 was internalized in human brain cortical neuronal cells, HCN-2, and mouse hippocampal cells, HT22. The cells transduced with Prdx6 conferred resistance against the oxidative stress inducers paraquat, H2O2, and glutamate. Furthermore, Prdx6 delivery ameliorated damage to neuronal cells by optimizing ROS levels and overstimulation of NF-κB. Intriguingly, transduction of Prdx6 increased the expression of endogenous Prdx6, suggesting that protection against oxidative stress was mediated by both extrinsic and intrinsic Prdx6. The results demonstrate that Prdx6 expression is critical to protecting oxidative stress-evoked neuronal cell death. We propose that local or systemic application of Prdx6 can be an effective means of delaying/postponing neuronal degeneration.
Collapse
Affiliation(s)
- Shatrunjai P Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nigar Fatma
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan; and
| | - Sanjay P Singh
- Department of Neurology, Creighton University, Omaha, Nebraska
| | - Dhirendra P Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|
18
|
Gorska M, Zmijewski MA, Kuban-Jankowska A, Wnuk M, Rzeszutek I, Wozniak M. Neuronal Nitric Oxide Synthase-Mediated Genotoxicity of 2-Methoxyestradiol in Hippocampal HT22 Cell Line. Mol Neurobiol 2015; 53:5030-40. [PMID: 26381428 DOI: 10.1007/s12035-015-9434-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
2-methoxyestradiol, metabolite of 17β-estradiol, is considered a potential anticancer agent, currently investigated in several clinical trials. This natural compound was found to be effective towards great number of cancers, including colon, breast, lung, and osteosarcoma and has been reported to be relatively non-toxic towards non-malignant cells. The aim of the study was to determine the potential neurotoxicity and genotoxicity of 2-methoxyestradiol at physiological and pharmacological relevant concentrations in hippocampal HT22 cell line. Herein, we determined influence of 2-methoxyestradiol on proliferation, inhibition of cell cycle, induction of apoptosis, and DNA damage in the HT22 cells. The study was performed using imaging cytometry and comet assay techniques. Herein, we demonstrated that 2-methoxyestradiol, at pharmacologically and also physiologically relevant concentrations, increases nuclear localization of neuronal nitric oxide synthase. It potentially results in DNA strand breaks and increases in genomic instability in hippocampal HT22 cell line. Thus, we are postulating that naturally occurring 2-methoxyestradiol may be considered a physiological modulator of neuron survival.
Collapse
Affiliation(s)
- Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Debinki 1 St, Poland.
| | | | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Debinki 1 St, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Iwona Rzeszutek
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Debinki 1 St, Poland
| |
Collapse
|