1
|
Francis AP, Meenakshi DU, Ganapathy S, Devasena T. Evaluating the ameliorative effect of nano bis-demethoxy curcumin analog against extrapulmonary toxicity in rat induced by inhaled multi-walled carbon nanotube. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46641-46651. [PMID: 37710065 DOI: 10.1007/s11356-023-29749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Carbon nanotubes (CNTs) exposure in human beings through inhalation may affect pulmonary organs and extrapulmonary organs including liver, kidney, brain, spleen, etc. The toxic effects developed as the result of CNTs exposure made us to explore the beneficial effect of nano bis-demethoxy curcumin analog (NBDMCA) towards multi-walled carbon nanotubes (MWCNTs)-induced toxicity in extrapulmonary organs. The current study described the ameliorative effect of NBDMCA against the toxic effects developed by inhaled MWCNTs in the extrapulmonary organs. The rats are exposed to the fixed aerosol concentration of 5 mg/m3 maintained in inhalation exposure chambers MWCNTs for 15 days as per OECD guidelines. After the exposure with MWCNTs, the animals were treated with NBDMCA (5 mg/kg body weight) with different dose frequencies, i.e., 2 doses per week for 1, 2, and 4 weeks. After treatment duration, the blood was drawn from retro-orbital vein and subjected to biochemical and cytokine analysis. Further the animals were euthanized, and the sample tissues were collected and performed oxidative stress and histopathology. The study results revealed that the intravenous administration of NBDMCA suppresses the extrapulmonary toxicity induced by MWCNTs, i.e., annulling the clinical changes and oxidative stress in various extrapulmonary organs at low doses of NBDMCA, evidenced its antioxidant efficacy. Moreover, use of increased doses provides better reduction in toxic symptoms with negligible side effects confirming the dose-dependent efficacy of NBDMCA. Overall, we suggested that NBDMCA may materialize into an effective compound for the reduction of MWCNTs-induced toxicity.
Collapse
Affiliation(s)
- Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | | | - Selvam Ganapathy
- International Institute of Biotechnology and Toxicology (IBAT), Padappai, 601301, India
| | - Thiyagarajan Devasena
- Centre for Nanoscience and Technology, A.C. Tech Campus, Anna University, Chennai, 600025, India.
| |
Collapse
|
2
|
Yang J, Xiao B, Li Y, Liu X, Zhang M, Luo Y, Wang B, Liu H. A novel biflavone from Reineckia carnea induces apoptosis of human renal cancer 786-O cells. Front Pharmacol 2022; 13:1053184. [PMID: 36532756 PMCID: PMC9756134 DOI: 10.3389/fphar.2022.1053184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system, which is highly invasive, metastatic, and insensitive to radiotherapy and chemotherapy. Chinese herbal medicine has always been an important source of anti-tumor drug development. Reineckia carnea Kunth is a traditional herb commonly used by the Miao nationality in southwest China. In this study, the extract of Reineckia carnea was isolated and purified by reverse phase preparative chromatography and other chromatographic techniques. According to the physicochemical properties and spectral data, the structure of the compound was identified, and a novel biflavone compound named Reineckia-biflavone A (RFA) was obtained. The result of antiproliferative activity showed that RFA had cytotoxicity on 786-O cells with an IC50 value of 19.34 μmol/L. The results of CCK-8 and hemolysis assays showed that RFA was not significantly cytotoxic to both red blood cells (RBC) and peripheral blood mononuclear cells (PBMC). By Hoechst 33258 apoptosis staining, typical apoptotic morphology was observed under fluorescence microscope. RFA could induce the apoptosis of 786-O cells with the increase of apoptosis rate. The cell cycle tests showed that the cell proportion was obviously arrested in the S phase. At the same time, RFA could decrease the mitochondrial membrane potential and increase the intracellular free Ca2+ concentration. Western blot showed that the expression levels of pro-apoptotic proteins (Bax, Caspase-3, Cleaved Caspase-3, and Cytochrome c) in cells rose, while the expression level of anti-apoptotic proteins (Bcl-2) declined significantly. In conclusion, this study suggests that the RFA is a new biflavone determined by SciFinder retrieval. The apoptosis may be triggered by RFA through the mitochondrial pathway, which is mediated by up-regulating the intracellular calcium ion, down-regulating the mitochondrial membrane potential, and changing the apoptosis-related proteins.
Collapse
Affiliation(s)
- Jianqiong Yang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Yamei Li
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiaoxuan Liu
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yaoling Luo
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Biao Wang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Hai Liu
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Devasena T, Francis AP, Ramaprabhu S. Toxicity of Graphene: An Update. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:51-76. [PMID: 34611755 DOI: 10.1007/398_2021_78] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene possesses wider biomedical applications including drug delivery, photothermal ablation of tumors, biosensors, and also in the disease diagnosis. The accidental or intentional exposure of the environment including plants, ecosystem, and humans toward graphene is gradually increasing. Therefore, graphene toxicity becomes a critical issue to be addressed despite their diverse applications in multiple fields. In this situation, the scientific community as well as the general public must get awareness about the toxicity of graphene. This article, therefore, reviews the investigations on graphene toxicity. This review reveals the toxicity of graphene in vitro, in vivo models along with the environmental toxicity. The advantages of graphene toxicity in bacterial cells and cancer cells were also reviewed.
Collapse
Affiliation(s)
| | | | - Sundara Ramaprabhu
- Alternative Energy and Nanotechnology Laboratory (AENL), Nanofunctional Materials Technology, Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
4
|
Rodríguez Castaño P, Parween S, Pandey AV. Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway. Int J Mol Sci 2019; 20:ijms20184606. [PMID: 31533365 PMCID: PMC6770025 DOI: 10.3390/ijms20184606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/mL of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1–100 µg/mL of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as CYP21A2. In CYP17A1 and CYP19A1, curcumin docked within 2.5 Å of central heme while in CYP21A2 the distance from heme was 3.4 Å, which is still in the same range or lower than distances of bound steroid substrates. These studies suggest that curcuminoids may cause inhibition of steroid metabolism, especially at higher dosages. Also, the recent popularity of turmeric powder as a dilatory supplement needs further evaluation for the effect of curcuminoids on steroid metabolism. The molecular structure of curcuminoids could be modified to generate better lead compounds with inhibitory effects on CYP17A1 and CYP19A1 for potential drugs against prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Patricia Rodríguez Castaño
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland.
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
5
|
Francis AP, Devasena T, Ganapathy S, Palla VR, Murthy PB, Ramaprabhu S. Multi-walled carbon nanotube-induced inhalation toxicity: Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1809-1822. [DOI: 10.1016/j.nano.2018.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|