1
|
Omar HM, Salaah SM, Saad AEHA, Azzam AM, Khalil MT, El-Sayed WM. Zinc oxide-Ulva lactuca nanocomposite is a robust dietary immunostimulant in the red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109831. [PMID: 39142372 DOI: 10.1016/j.fsi.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Aquaculture industry suffers significant limitations such as low resistance to diseases and expensive feed. This study investigated the antibacterial and immunostimulatory activities of ZnO-Ulva lactuca nanocomposite (ZnO-Ul NC) in the Procambarus clarkii. Zinc oxide nanoparticles (ZnO NPs) and ZnO-Ul NC were synthetized and characterized by electron microscopies as well as Fourier transform infrared spectroscopy. ZnO NPs and ZnO-Ul NC inhibited the growth of the isolated species Citrobacter freundii and Enterobacter hormaechei. For immunostimulatory evaluation, six crayfish groups (control, U. lactuca, ZnO L, ZnO H, ZnO-Ul L, and ZnO-Ul H) were fed on commercial diet, Ulva lactuca powder, and low or high dose of ZnO NPs or ZnO-Ul NCs, respectively for 90 days. The highest levels of total hemocyte count, granular cells%, phenoloxidase (PO) activity in hemolymph, and NO, superoxide dismutase (SOD), and GSH in hepatopancreas were all reported in the ZnO-Ul groups. The expression of proPO, SOD, and lysozyme exhibited the highest upregulation in the ZnO-Ul H group. Taken together, dietary ZnO-Ul NC significantly improved the non-specific immunity and antioxidant milieu of the crayfish at the genomic and proteomic levels. ZnO-Ul NC is cost effective, easily synthesized, and a promising immunostimulant for Procambarus clarkii that could be used in the aquaculture.
Collapse
Affiliation(s)
- Hadeel M Omar
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Sally M Salaah
- National Institute of Oceanography and Fisheries (NIOF), Giza, Egypt
| | - Abd El-Halim A Saad
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Ahmed M Azzam
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Magdy T Khalil
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Islam AKMS, Bhuiyan R, Khan MAI, Akter S, Islam MR, Khokon MAR, Latif MA. Synergistic Antifungal Activity of Green Synthesized Zinc Oxide Nanoparticles and Fungicide Against Rhizoctonia solani Causing Rice Sheath Blight Disease. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05020-3. [PMID: 39207677 DOI: 10.1007/s12010-024-05020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The biosynthesis of metal oxide nanoparticles using leaf extract of medicinal plants is a promising substitute for the traditional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from local "Dholkolmi" (Ipomoea carnea) leaf extract which is a medicinal plant growing outside the roads of different regions of Bangladesh. The biosynthesized zinc oxide nanoparticles (ZnONPs) were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, zeta-potential, scanning electron microscopy-energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The results of UV-visible spectrophotometers observed an absorption peak at 373 nm wavelength, which confirmed the synthesis of ZnONPs in the solution. ZnONP sizes determined by XRD, DLS, and TEM are approximately ~37 nm, 105.61 nm, and 19.66 nm, respectively. ZnONPs were present because of the strong oxygen and zinc signals in the EDX profile. Additionally, this research assessed the antifungal activity of the biosynthesized ZnONPs and as well as folicur-incorporated ZnONPs against Rhizoctonia solani by the poison bait technique. According to the result of this study, ZnONPs synthesized from Ipomoea carnea leaf extract showed no promising result against Rhizoctonia solani mycelial growth reduction. But folicur-incorporated ZnONPs revealed a significant finding with a maximum 100% inhibition of mycelial growth at 1:1 and 3:1 ratio of ZnONPs with folicur fungicide under in vitro conditions. In the net house experiment, folicur-incorporated ZnONPs at a 1:1 ratio of ZnONPs with folicur showed considerable disease inhibition (26.96% RLH) as compared to disease control (52.83% RLH). In the case of rainfed transplanted Aus (March-June), the highest percentage of RLH was recorded in disease control (64.61%), and the lowest RLH was found in folicur (24.79%) followed by a 1:1 ratio of ZnONPs with folicur (32.10%) in field condition. On the other hand, the highest percentage of RLH was recorded in disease control (65.31%) and the lowest RLH was found in folicur (18.14%) followed by a 1:1 ratio of ZnONPs with folicur (21.39%) in rainfed transplanted Aman (July-November) season. The findings of the in vitro and in vivo studies provided evidence that ZnONPs and folicur had a strong synergistic antifungal impact and may be employed as a possible rice sheath blight disease management agent.
Collapse
Affiliation(s)
- A K M Sahfiqul Islam
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - Rejwan Bhuiyan
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | | | - Shamima Akter
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - Md Rashidul Islam
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Atiqur Rahman Khokon
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Abdul Latif
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh.
| |
Collapse
|
3
|
Domingues JM, Miranda CS, Homem NC, Felgueiras HP, Antunes JC. Nanoparticle Synthesis and Their Integration into Polymer-Based Fibers for Biomedical Applications. Biomedicines 2023; 11:1862. [PMID: 37509502 PMCID: PMC10377033 DOI: 10.3390/biomedicines11071862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of nanoparticles as effective drug delivery systems combined with the versatility of fibers has led to the development of new and improved strategies to help in the diagnosis and treatment of diseases. Nanoparticles have extraordinary characteristics that are helpful in several applications, including wound dressings, microbial balance approaches, tissue regeneration, and cancer treatment. Owing to their large surface area, tailor-ability, and persistent diameter, fibers are also used for wound dressings, tissue engineering, controlled drug delivery, and protective clothing. The combination of nanoparticles with fibers has the power to generate delivery systems that have enhanced performance over the individual architectures. This review aims at illustrating the main possibilities and trends of fibers functionalized with nanoparticles, focusing on inorganic and organic nanoparticles and polymer-based fibers. Emphasis on the recent progress in the fabrication procedures of several types of nanoparticles and in the description of the most used polymers to produce fibers has been undertaken, along with the bioactivity of such alliances in several biomedical applications. To finish, future perspectives of nanoparticles incorporated within polymer-based fibers for clinical use are presented and discussed, thus showcasing relevant paths to follow for enhanced success in the field.
Collapse
Affiliation(s)
- Joana M Domingues
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Natália C Homem
- Simoldes Plastics S.A., Rua Comendador António da Silva Rodrigues 165, 3720-193 Oliveira de Azeméis, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
4
|
Rai RS, P GJ, Bajpai V, Khan MI, Elboughdiri N, Shanableh A, Luque R. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. ENVIRONMENTAL RESEARCH 2023; 221:114807. [PMID: 36455633 DOI: 10.1016/j.envres.2022.114807] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Synthesizing ZnO nanostructures ranging from 1 nm to 4 nm confines the electron cloud and exhibits a quantum effect generally called as quantum confinement effect attracting many researchers in the field of electronics and optics. ZnO nanostructures are used in medical applications to formulate antioxidant, antibacterial, antifungal, anti-inflammatory, wound healing, and anti-diabetic medications. This work is a comprehensive study of green synthesis of ZnO nanomaterials using different biological sources and highlights different processes able to produce nanostructures including nanowires, nanorods, nanotubes and other nano shapes of ZnO nanostructures. Different properties of ZnO nanostructures and their targeted bioengineering applications are also described. The strategies and challenges of the eco-friendly approach to enhance the application span of ZnO nanomaterials are also summarized, with future prospects for greener design of ZnO nanomaterials are also suggested.
Collapse
Affiliation(s)
- Ravi Shankar Rai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India.
| | - Girish J P
- Department of Mechanical Engineering with Specialization in Design and Manufacturing, Indian Institute of Information Technology Design and Manufacturing, Kurnool, A.P, India.
| | - Vivek Bajpai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes, 6029, Tunisia.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
5
|
Khairnar B, Dabhane H, Dashpute R, Girase M, Nalawade P, Gaikwad V. Study of biogenic fabrication of Zinc oxide nanoparticles and their applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Elfadil D, Elkhatib WF, El-Sayyad GS. Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections. Microb Pathog 2022; 170:105721. [PMID: 35970290 DOI: 10.1016/j.micpath.2022.105721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Antimicrobial agents and alternative strategies to combat bacterial infections have become urgent due to the rapid development of multidrug-resistant bacteria caused by the misuse and overuse of antibiotics, as well as the ineffectiveness of antibiotics against difficult-to-treat infectious diseases. Nanobiotics is one of the strategies being explored to counter the increase in antibiotic-resistant bacteria. Nanobiotics are antibiotic molecules encapsulated in nanoparticles or artificially engineered pure antibiotics that are ≤ 100 nm in size in at least one dimension. Formulation scientists recognize nanobiotic delivery systems as an effective strategy to overcome the limitations associated with conventional antibiotic therapy. This review highlights the general mechanisms by which nanobiotics can be used to target resistant microbes and biofilm-associated infections. We focus on the design elements, properties, characterization, and toxicity assessment of organic nanoparticles, inorganic nanoparticle and molecularly imprinted polymer-based nano-formulations that can be designed to improve the efficacy of nanobiotic formulation.
Collapse
Affiliation(s)
- Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Morocco
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt; Department of Microbiology and Immunology, Galala University, New Galala City, Suez, Egypt.
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Galala University, New Galala City, Suez, Egypt; Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
7
|
Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2160. [PMID: 35329610 PMCID: PMC8951444 DOI: 10.3390/ma15062160] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Jalal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 400087 Oradea, Romania
| |
Collapse
|
9
|
Effect of Cu2+ on the optical properties of zinc hydroxy-carbonate phosphors prepared in different synthesis conditions. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Essien ER, Atasie VN, Nwude DO, Adekolurejo E, Owoeye FT. Characterisation of ZnO nanoparticles prepared using aqueous leaf extracts of Chromolaena odorata (L.) and Manihot esculenta (Crantz). S AFR J SCI 2022. [DOI: 10.17159/sajs.2022/11225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plant-mediated routes for synthesising metal oxide nanoparticles are gaining tremendous attention due to the benefits of the technique: simplicity, cost-effectiveness, and eco-friendliness. We compared the properties of zinc oxide nanoparticles (ZnONPs) made from aqueous leaf extracts of Chromolaena odorata and Manihot esculenta, both of which are abundant on the African continent. The phytochemical composition of the extracts was first assessed using gas chromatography-mass spectrometry (GC-MS) to determine the types of biomolecules involved in the reducing and capping processes that result in ZnONP formation. After that, UV-Vis spectrophotometry, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, X-ray diffractometry, and Fourier transform infrared spectroscopy (FTIR) were used to study ZnONP formation, morphological characteristics, elemental composition, shape and size properties, and phase composition. The ZnONPs made with Chromolaena odorata leaf extract had a better distribution of spherical and hexagonal forms, with an average particle size of 42.35 nm. The ZnONPs made with Manihot esculenta leaf as a reductant had a particle size of 14.71 nm on average and were more agglomerated with poor particle distribution. Phytosterols were shown to be the most important biomolecules in the reduction and capping reactions, according to GC-MS and FTIR analyses. In this study, we created a cost-effective technique for the synthesis of eco-friendly ZnONPs for diverse applications, particularly in Africa, using Chromolaena odorata and Manihot esculenta leaves.
Collapse
Affiliation(s)
- Enobong R. Essien
- Department of Chemical and Food Sciences, Bells University of Technology, Ota, Nigeria
| | - Violette N. Atasie
- Department of Chemical and Food Sciences, Bells University of Technology, Ota, Nigeria
| | - Davies O. Nwude
- Department of Chemical and Food Sciences, Bells University of Technology, Ota, Nigeria
| | - Ezekiel Adekolurejo
- Department of Chemical and Food Sciences, Bells University of Technology, Ota, Nigeria
| | - Felicia T. Owoeye
- Department of Chemical and Food Sciences, Bells University of Technology, Ota, Nigeria
| |
Collapse
|
11
|
Zhao Y, Zhu M, Zhao Y, Zhang H, Zhang Y, Miao Z. A polyimide complex system decorated with ZnO nanorods with multiple antibacterial effects. NEW J CHEM 2022. [DOI: 10.1039/d1nj06220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-sectional SEM images of nano-ZnO particles coated with epoxy resin glue: (a) PI-0, (b) PI-1, (c) PI-2, and (d) PI-3.
Collapse
Affiliation(s)
- Yuzhen Zhao
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Min Zhu
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Yang Zhao
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Huimin Zhang
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Yongming Zhang
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
12
|
Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
S U, R U, R S, K G. Evaluation of Bioactive Potential of a Tragia involucrata Healthy Leaf Extract @ ZnO Nanoparticles. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00864-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Anjali KP, Sangeetha BM, Raghunathan R, Devi G, Dutta S. Seaweed Mediated Fabrication of Zinc Oxide Nanoparticles and their Antibacterial, Antifungal and Anticancer Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202003517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- K. P. Anjali
- Department of Chemical Engineering National Institute of Technology Durgapur Durgapur West Bengal 713209 India
| | - B. M. Sangeetha
- Mechanical and Industrial Engineering Department National University of Science and Technology P.O Box 2322 Sultanate of Oman India
| | - R. Raghunathan
- Center for Bioscience and Nanoscience Research Tamil Nadu−21 India
| | - Geetha Devi
- Mechanical and Industrial Engineering Department National University of Science and Technology P.O Box 2322 Sultanate of Oman India
| | - Susmita Dutta
- Department of Chemical Engineering National Institute of Technology Durgapur Durgapur West Bengal 713209 India
| |
Collapse
|
15
|
Nezamabadi V, Akhgar MR, Tahamipour B, Rajaei P. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles by Artemisia aucheri Extract. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2426. [PMID: 33542941 PMCID: PMC7856401 DOI: 10.30498/ijb.2020.151379.2426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Green approach to nanoparticles, including metal oxides Because of an inevitable disadvantage of physical or chemical synthesis routes is attractive nowadays. ZnO nanoparticles play a key role in the medicals and drugs area. Objectives In this study, biosynthesis of ZnO nanoparticles with new approach to enhanced the Antimicrobial properties against gram-negative and gram-positive was performed by use of a new type of plant extract, Artemisia aucheri, in an environmentally friendly, cost-effective, simple procedure way. Materials and Methods By adding Zn(NO3)2 to A. aucheri methanol extract followed by stirring The resulted solution and final heat treatment in 200 °C the ZnO nanoparticles were synthesized. Disc diffusion method was applied to evaluation the Antimicrobial properties of the extract and nanoparticles towards resistance into Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive). Results X-ray diffraction pattern (XRD) result showed all of the peaks proportion to ZnO and no other peaks were detected, also demonstrated nanostructure nature with crystallite size about 9 nm. In the Fourier transform infrared spectroscopy (FTIR), there is a band in the 550 cm-1 which is corresponded to ZnO. Also 76 nm average particle size obtained by DLS experiments. Energy-dispersive X-ray spectroscopy (EDS) analysis showed strong peaks for Zn and O, support supposition of ZnO nanoparticles. Field emission scanning electron microscopy (FESEM) images indicated spherical rounded particles with the size of average 30 nm. Antibacterial tests showed effective diameter about 11 and 10 mm for plant extract and also 7 and 5 mm for ZnO nanoparticles against E. coli (gram-negative) and S. aureus (gram-positive) in agar disc diffusion method, respectively. Conclusions Biosynthesized ZnO nanoparticles could be a good candidate for antibacterial activity, both against E. coli (gram-negative) and S. aureus (gram-positive) especially for versus E. coli.
Collapse
Affiliation(s)
- Vida Nezamabadi
- Department of Chemistry, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Mohammad Reza Akhgar
- Department of Chemistry, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Batool Tahamipour
- Young Researchers and Elite Club, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Peyman Rajaei
- Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| |
Collapse
|
16
|
Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat- Gadgil BS, Pandit A, Bohara RA. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110319. [DOI: 10.1016/j.msec.2019.110319] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
17
|
Synthesis of ZnO nanoparticles using radish root extract for effective wound dressing agents for diabetic foot ulcers in nursing care. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101364] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. JOURNAL OF MATERIALS SCIENCE 2019. [DOI: 10.1007/s10853-019-04121-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Arciniegas-Grijalba P, Patiño-Portela M, Mosquera-Sánchez L, Guerra Sierra B, Muñoz-Florez J, Erazo-Castillo L, Rodríguez-Páez J. ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:808-825. [DOI: 10.1016/j.msec.2019.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023]
|
20
|
Singh S, Hussain A, Shakeel F, Ahsan MJ, Alshehri S, Webster TJ, Lal UR. Recent insights on nanomedicine for augmented infection control. Int J Nanomedicine 2019; 14:2301-2325. [PMID: 31114188 PMCID: PMC6497429 DOI: 10.2147/ijn.s170280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial agents have been widely investigated for protecting against microbial infections in modern health. Drug-related limitations, poor bioavailability, toxicity to mammalian cells, and frequent bacteria drug resistance are major challenges faced when exploited in nanomedicine forms. Specific attention has been paid to control nanomaterial-based infection against numerous challenging pathogens in addition to improved drug delivery, targeting, and pharmacokinetic (PK) profiles, and thus, efficient antimicrobials have been fabricated using diverse components (metals, metal oxides, synthetic and semisynthetic polymers, natural or biodegradable polymers, etc). The present review covers several nanocarriers delivered through various routes of administration, highlighting major findings to control microbial infection as compared to using the free drug. Results over the past decade support the consistent development of various nanomedicines capable of improving biological significance and therapeutic benefits against an array of microbial strains. Depending on the intended application of nanomedicine, infection control will be challenged by various factors such as weighing the risk-benefits in healthcare settings, nanomaterial-induced (eco)toxicological hazards, frequent development of antibiotic resistance, scarcity of in vivo toxicity data, and a poor understanding of microbial interactions with nanomedicine at the molecular level. This review summarizes well-established informative data for nanomaterials used for infection control and safety concerns of nanomedicines to healthcare sectors followed by the significance of a unique "safe-by-design" approach.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, 302023, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA,
| | - Uma Ranjan Lal
- School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himacahal Pradesh, India
| |
Collapse
|
21
|
Haja Hameed AS, Louis G, Karthikeyan C, Thajuddin N, Ravi G. Impact of l-Arginine and l-Histidine on the structural, optical and antibacterial properties of Mg doped ZnO nanoparticles tested against extended-spectrum beta-lactamases (ESBLs) producing Escherichia coli. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:373-382. [PMID: 30593947 DOI: 10.1016/j.saa.2018.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Magnesium doped Zinc oxide nanoparticles (Mg:ZnO NPs) were synthesized by co-precipitation method. The synthesized Mg:ZnO NPs exhibited hexagonal wurtzite structure, which was confirmed by X-ray diffraction results. After structural confirmation of Mg doped ZnO NPs, base amino acids like l-Arginine and l-Histidine were separately incorporated with the Mg: ZnO NPs. l-Arginine added Mg:ZnO (Mg:ZnO:LA) and l-Histidine added Mg:ZnO (Mg:ZnO: LH) NPs retained the same wurtzite hexagonal structure and average crystallite sizes of Mg: ZnO:LA and Mg: ZnO:LH NPs were found to be 25 nm and 20 nm respectively. The sizes of Mg:ZnO:LH and Mg: ZnO: LA NPs decreased as compared to that of the Mg doped ZnO NPs. From the FT-IR spectra, the ZnO stretching frequencies were observed at 516, 517 and 518 cm-1 for Mg:ZnO, Mg:ZnO: LA and Mg: ZnO:LH NPs respectively. From the FESEM images, the morphologies of ZnO:Mg and ZnO:Mg:LA NPs were spherical and the Mg: ZnO: LH NPs formed nano-flakes structure. From the EDAX study, the amount of elements incorporated in the samples was determined. The photoluminescence measurements revealed the existence of zinc vacancies, oxygen vacancies and surface defects of the samples. Antibacterial activity of the amino acid added Mg doped ZnO NPs was studied against extended-spectrum beta-lactamases (ESBLs) producing Escherichia coli (E. coli).The Minimal Inhibitory Concentration (MIC) of the LH added ZnO:Mg NPs was found to be 1000 μg/ml for which the growth of E. coli completely inhibited. l-Histidine added Mg doped ZnO NPs showed the highest antibacterial activity as compared to that of the Mg:ZnO NPs and ZnO:Mg:LA NPs.
Collapse
Affiliation(s)
| | - Golda Louis
- PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India
| | - Chandrasekaran Karthikeyan
- KIRND Institute of Research and Development Pvt Ltd, Materials Science and Toxicology Department, Tiruchirappalli, Tamil Nadu 620 020, India
| | - Nooruddin Thajuddin
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, Bharathidasan University, Tiruchirappalli 600 024, Tamil Nadu, India
| | - Ganesan Ravi
- School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| |
Collapse
|
22
|
Saif S, Tahir A, Asim T, Chen Y, Khan M, Adil SF. Green synthesis of ZnO hierarchical microstructures by Cordia myxa and their antibacterial activity. Saudi J Biol Sci 2019; 26:1364-1371. [PMID: 31762597 PMCID: PMC6864302 DOI: 10.1016/j.sjbs.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 01/26/2023] Open
Abstract
In this study, the leaves extract of Cordia myxa, has been used for the first time to synthesize zinc oxide (ZnO) hierarchical microstructures. The solution combustion method was employed as a self-sustaining reaction between zinc nitrate and the leaves extract. The surface properties of leaves mediated ZnO microstructures were determined by UV–Visible spectral analysis, Fourier transform infrared (FT-IR), Cold field emission-scanning electron microscopy (CFE-SEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). In addition, the effect of the leaves extract concentration on ZnO structures, size and surface properties was also studied. ZnO structures synthesized employing C. myxa were found to be hexagonal, triangular and round in shape which was determined using CFE-SEM. X-ray diffraction (XRD) analysis confirmed the crystalline nature of compounds. Furthermore, C. myxa mediated ZnO microstructures shows good bactericidal activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.
Collapse
Affiliation(s)
- Sadia Saif
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.,Department of Environmental Sciences, Kinnaird College for Women, Lahore 54000, Pakistan
| | - Arifa Tahir
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan
| | - Tayyaba Asim
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Sayyar Z, Jafarizadeh Malmiri H. Photocatalytic and antibacterial activities study of prepared self-cleaning nanostructure surfaces using synthesized and coated ZnO nanoparticles with Curcumin nanodispersion. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zkri-2018-2096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Zinc oxide nanoparticles had been synthesized and encapsulated using Curcumin nanoemulsions, Zn(Cur)O NPs, under subcritical water conditions. The effects of temperature (120, 140 and 160 °C) and pH values of the reaction solution (4, 7 and 10) on the particle size, grain size, cristallinity, specific surface area, band gap, Urbach energy, morphology, photocatalytic activity and antibacterial properties of the prepared Zn(Cur)O NPs were evaluated using XRD, FT-IR, SEM, EDX and UV-Vis spectroscopy analysis. The obtained results indicate that the prepared spherical and rod shapes Zn(Cur)O NPs had a crystallite size distribution of 10–100 nm. Furthermore, the results reveal that most uniform Zn(Cur)O NPs with highest photocatalytic activity, quantum yield (0.161 mol·m−2 s−1), specific surface area (242 m2/g), minimum band gap (2.62 eV) and Urbach energy (0.125 meV) were formed at 160 °C and natural pH. The highest antibacterial activities against both Gram positive and negative bacteria strains, were achieved using the synthesized Zn(Cur)O at 160 °C and basic pH(10).
Collapse
Affiliation(s)
- Zahra Sayyar
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Hoda Jafarizadeh Malmiri
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran , Tel.: +98-41-33459099, Fax: +98-41-33444355, E-mail:
| |
Collapse
|
24
|
Kalpana VN, Devi Rajeswari V. A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorg Chem Appl 2018; 2018:3569758. [PMID: 30154832 PMCID: PMC6093006 DOI: 10.1155/2018/3569758] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 11/17/2022] Open
Abstract
The advance of reliable and eco-friendly strategies for the development of nanoparticles is a fundamental key to the discipline of nanotechnology. Nanoparticles have been continuously evaluated and have been used in many industrial applications for a decade. In particular, the role of zinc oxide nanoparticles (ZnO NPs) has received a great interest because of various properties such as UV filter properties and photochemical, antifungal, high catalyst, and antimicrobial activities. Because of the high rate of poisonous chemicals and the extreme surroundings used within the chemical and physical methods, the green techniques have been adopted using plants, fungi, bacteria, and algae for the synthesis of nanoparticles. Therefore, this paper considers various green synthesis methods to provide the evidence of ZnO NP role to several applications, and in addition, biomedical applications and toxic effect were reviewed. Therefore, the paper used various secondary sources to collect the relevant review articles. From the findings, the green route of synthesis is rather safe and eco-friendly when compared to physical and chemical means of synthesis. On the other hand, its biomedical applications in this sector are increased day by day in various processes including bioimaging, drug delivery, biosensors, and gene delivery. With respect to its toxicity properties, ZnO NPs can act as smart weapons against multiple drug-resistant microorganisms and as a talented substitute for antibiotics.
Collapse
Affiliation(s)
- V. N. Kalpana
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - V. Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
25
|
Jiang J, Pi J, Cai J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg Chem Appl 2018; 2018:1062562. [PMID: 30073019 PMCID: PMC6057429 DOI: 10.1155/2018/1062562] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are used in an increasing number of industrial products such as rubber, paint, coating, and cosmetics. In the past two decades, ZnO NPs have become one of the most popular metal oxide nanoparticles in biological applications due to their excellent biocompatibility, economic, and low toxicity. ZnO NPs have emerged a promising potential in biomedicine, especially in the fields of anticancer and antibacterial fields, which are involved with their potent ability to trigger excess reactive oxygen species (ROS) production, release zinc ions, and induce cell apoptosis. In addition, zinc is well known to keep the structural integrity of insulin. So, ZnO NPs also have been effectively developed for antidiabetic treatment. Moreover, ZnO NPs show excellent luminescent properties and have turned them into one of the main candidates for bioimaging. Here, we summarize the synthesis and recent advances of ZnO NPs in the biomedical fields, which will be helpful for facilitating their future research progress and focusing on biomedical fields.
Collapse
Affiliation(s)
- Jinhuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Revathi T, Thambidurai S. Immobilization of ZnO on Chitosan-Neem seed composite for enhanced thermal and antibacterial activity. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Jalal M, Ansari MA, Ali SG, Khan HM, Rehman S. Anticandidal activity of bioinspired ZnO NPs: effect on growth, cell morphology and key virulence attributes of Candida species. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:912-925. [PMID: 29446992 DOI: 10.1080/21691401.2018.1439837] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The pathogenicity of Candida species in human is dependent on a variety of virulence factor such as adhesion factors, germ tube and hyphal formation, secretion of hydrolytic phospholipases and proteinases and drug resistance biofilm. ZnO NPs have been synthesized by using leaf extract of Crinum latifolium and were characterized by UV-Vis spectrophotometer, FTIR, SEM, EDX and TEM. In this study for the first time, potent inhibitory effects of ZnO NPs on principal virulence factors of Candida albicans and non-albicans such as germ tube formation, secretion of hydrolytic phospholipases and proteinases and biofilm formation has been investigated. ZnO NPs remarkably reduced the germ tube formation of C. albicans at 1 (86.4%), 0.5 (75.0%), 0.25 (61.4%), 0.125 (34.1%) and 0.062 mg/ml (11.4%). ZnO NPs significantly lowered the phospholipase and proteinase secretion by 58.8 and 95.2% at 0.25 mg/ml, respectively. CSLM results showed that ZnO NPs suppressed biofilm formation up to 85% at 0.25 mg/ml. SEM and TEM micrograph showed that ZnO NPs penetrated inside the cell and causes extensive damaged in cell wall and cell membrane. Inhibition of Candida growth and various virulent factors by ZnO NPs provides an insight towards their therapeutic application for the treatment of Candida-associated infections.
Collapse
Affiliation(s)
- Mohammad Jalal
- a Department of Microbiology , Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University , Aligarh , India
| | - Mohammad Azam Ansari
- b Department of Epidemic Disease Research , Institutes of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Syed Ghazanfar Ali
- a Department of Microbiology , Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University , Aligarh , India
| | - Haris M Khan
- a Department of Microbiology , Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University , Aligarh , India
| | - Suriya Rehman
- b Department of Epidemic Disease Research , Institutes of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| |
Collapse
|
28
|
Agarwal H, Venkat Kumar S, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. RESOURCE-EFFICIENT TECHNOLOGIES 2017. [DOI: 10.1016/j.reffit.2017.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Steffy K, Shanthi G, Maroky AS, Selvakumar S. Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. J Adv Res 2017; 9:69-77. [PMID: 30046488 PMCID: PMC6057447 DOI: 10.1016/j.jare.2017.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022] Open
Abstract
Nanobiotechnology has been emerged as an efficient technology for the development of antimicrobial nanoparticles through an eco-friendly approach. In this study, green synthesized phytonanocomposite of ZnO from Strychnos nux-vomica leaf aqueous extract was characterized by X-ray diffraction analysis (XRD), UV–visible-spectroscopy, Photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), High-resolution Transmission Electron Microscopy (HR-TEM), and Energy dispersive X-ray analysis (EDX). Antibacterial activity was investigated against multidrug-resistant bacteria (MDR) isolated from diabetic foot ulcers (DFUs), such as MDR–methicillin resistant Staphylococcus aureus (MRSA), MDR–Escherichia coli, MDR–Pseudomonas aeruginosa, MDR–Acinetobacter baumannii, as well as against standard bacterial strains, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, and E. faecalis ATCC 29212 through disc diffusion assays on Muller Hinton Agar. The characterization studies revealed a size-controlled synthesis of quasi-spherical hexagonal wurtzite structured ZnO phytonanocomposite with an average size of 15.52 nm. Additionally, remarkable bactericidal activities against MDR clinical as well as ATCC bacterial strains were exhibited, with a maximum zone of inhibition of 22.33 ± 1.53 mm (against S. aureus ATCC 29213) and 22.33 ± 1.16 mm (MDR–MRSA) at a concentration of 400 µg/mL. This study thus established the possibility of developing antimicrobial ZnO nanocomposite of Strychnos nux-vomica leaf extract to combat developing drug resistance currently being experienced in health care facilities.
Collapse
Affiliation(s)
- Katherin Steffy
- Division of Microbiology, Rajah Muthiah Medical College, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - G Shanthi
- Division of Microbiology, Rajah Muthiah Medical College, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Anson S Maroky
- Department of Pharmacy, Faculty of Engineering and Technology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - S Selvakumar
- Department of Zoology, Faculty of Science, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| |
Collapse
|
30
|
Rajabi HR, Naghiha R, Kheirizadeh M, Sadatfaraji H, Mirzaei A, Alvand ZM. Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: Synthesis, characterization, and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1109-1118. [DOI: 10.1016/j.msec.2017.03.090] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/05/2017] [Accepted: 03/12/2017] [Indexed: 01/22/2023]
|
31
|
Mostafaii G, Chimehi E, Gilasi H, Iranshahi L. Investigation of Zinc Oxide Nanoparticles Effects on Removal of Total Coliform Bacteria in Activated Sludge Process Effluent of Municipal Wastewater. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/jest.2017.49.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Rongione NA, Floerke SA, Celik E. Developments in Antibacterial Disinfection Techniques. APPLYING NANOTECHNOLOGY FOR ENVIRONMENTAL SUSTAINABILITY 2016. [DOI: 10.4018/978-1-5225-0585-3.ch009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the most daunting challenges facing nations today is controlling the spread of increasingly lethal bacteria. Today, a handful of bacteria can no longer be treated with traditional antibiotics and show antibacterial resistance. In this regard, nanotechnology possesses tremendous potential for the development of novel tools which help prevent and combat the spread of unwanted microorganisms. These tools can provide unique solutions for the challenges of the traditional disinfection methods, such as increased antibacterial activity, cost reduction, biocompatibility and personalized treatment. Despite its great potential, nanotechnology remains in its infancy and continued research efforts are required to achieve its full potential. In this chapter, traditional methods and their associated limitations are reviewed for their efficacy against microbial spread, and potential solutions in nanotechnology are described. A review of the state of the art disinfection techniques using nanotechnology is presented, and promising new areas in the field are discussed.
Collapse
|