1
|
He L, Xu R, Ma X, Yin X, Mueller E, Feng W, Menze M, Kim S, McClain CJ, Zhang X. Multiomics Studies on Metabolism Changes in Alcohol-Associated Liver Disease. J Proteome Res 2024; 23:4962-4972. [PMID: 39418671 DOI: 10.1021/acs.jproteome.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic dysfunction in the liver represents a predominant feature in the early stages of alcohol-associated liver disease (ALD). However, the mechanisms underlying this are only partially understood. To investigate the metabolic characteristics of the liver in ALD, we did a relative quantification of polar metabolites and lipids in the liver of mice with experimental ALD using untargeted metabolomics and untargeted lipidomics. A total of 99 polar metabolites had significant abundance alterations in the livers of alcohol-fed mice. Pathway analysis revealed that amino acid metabolism was the most affected by alcohol in the mouse liver. Metabolites involved in glycolysis and the TCA cycle were decreased, while glycerol 3-phosphate (G3P) and long-chain fatty acids were increased. Relative quantification of lipids unveiled an upregulation of multiple lipid classes, suggesting that alcohol consumption drives metabolism toward lipid synthesis. Results from enzyme expression and activity detection indicated that the decreased activity of mitochondrial glycerol 3-phosphate dehydrogenase contributed to the disordered metabolism.
Collapse
Affiliation(s)
- Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Eugene Mueller
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
| | - Wenke Feng
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Medicine, University of Louisville, Louisville, Kentucky 40208, United States
| | - Michael Menze
- Department of Biology, University of Louisville, Louisville, Kentucky 40208, United States
| | - Seongho Kim
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Biostatistics and Bioinformatics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Craig J McClain
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Medicine, University of Louisville, Louisville, Kentucky 40208, United States
- Robley Rex Louisville VAMC, Louisville, Kentucky 40292, United States
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
| |
Collapse
|
2
|
Grandini NA, Costa MR, Gregolin CS, Siqueira JS, Vieira TA, Togneri Ferron AJ, Francisqueti-Ferron FV, Romualdo GR, Lúcia Dos Anjos Ferreira A, Aldini G, Corrêa CR, Moreto F. Effects of carnosine supplementation on markers for the pathophysiological development of metabolic dysfunction-associated steatotic liver disease in a diet-induced model. Mol Cell Endocrinol 2024; 582:112138. [PMID: 38147954 DOI: 10.1016/j.mce.2023.112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Consumption of diets high in sugar and fat is related to the development of Metabolic dysfunction-associated steatotic liver disease (MASLD). Carnosine (CAR) is a dipeptide with antioxidant and anti-inflammatory action and has been studied for treating diseases. This work aimed to evaluate the effects of CAR on diet-induced MASLD in rats. Male Wistar rats were distributed into 2 groups (17 weeks): normocaloric (Co, n = 12), and hypercaloric diet rich in lipids and simple carbohydrates (MASLD, n = 12). After, the animals were redistributed to begin the treatment with CAR (4 weeks): Co (n = 6), Co + CAR (n = 6), MASLD (n = 6), and MASLD + CAR (n = 6), administered intraperitoneally (250 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; hepatic steatosis, inflammatory and oxidative markers. MASLD group had a higher adiposity index, systolic blood pressure, glucose, plasma and liver triglycerides and cholesterol, insulin, hepatic steatosis, oxidative markers, and lower PPAR-α (Peroxisome Proliferator-activated receptor α), compared to the Co. CAR attenuated plasma and hepatic triglyceride and cholesterol levels, hepatic steatosis, CD68+ macrophages, and hepatic oxidative markers, in addition to increasing HDL cholesterol levels and PPAR-α, compared to the untreated MASLD group. CAR acts in importants pathophysiological processes of MASLD and may be a therapeutic compound to control the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | | | - Fernando Moreto
- São Paulo State University (UNESP), Medical School, 18618687, Botucatu, Brazil
| |
Collapse
|
3
|
Kar E, Alataş Ö, Şahıntürk V, Öz S. Effects of metformin on lipopolysaccharide induced inflammation by activating fibroblast growth factor 21. Biotech Histochem 2021; 97:44-52. [PMID: 33663305 DOI: 10.1080/10520295.2021.1894353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Lipopolysaccharide (LPS) is a component of the cell wall of Gram-negative bacteria that produces endotoxemia, which may cause septic shock. Metformin (MET) is a widely used hypoglycemic drug that exhibits anti-inflammatory properties. Fibroblast growth factor 21 (FGF21) is an endocrine polypeptide that affects glucose and lipid metabolism, and also possesses anti-inflammatory properties. We investigated the effects of MET and FGF21 on inflammation due to LPS induced endotoxemia in male rats. Animals were divided into five groups: control, LPS, pre-MET LPS, LPS + 1 h MET and LPS + 3 h MET. Serum levels of alanine aminotransferase, aspartate aminotransferase, FGF2, interleukin-10 and tumor necrosis factor alpha were measured. Malondialdehyde, myeloperoxidase and FGF21 levels were measured in liver tissue samples. Histopathology of all groups was assessed using hematoxylin and eosin stained sections. LPS caused severe inflammatory liver damage. MET exhibited a partially protective effect and reduced inflammation significantly. FGF21 is produced in the liver following inflammation and MET may increase its production.
Collapse
Affiliation(s)
- Ezgi Kar
- Department of Medical Biochemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Özkan Alataş
- Department of Medical Biochemistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Varol Şahıntürk
- Department of Histology and Embryology, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Semih Öz
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
4
|
İlce Z, Bekdemir FO, Pandır D. Acute toxic effect of lipopolysaccharides to blood tissue in rats and responses to vitamin E and sodium selenite. J Food Biochem 2019; 43:e13060. [PMID: 31576601 DOI: 10.1111/jfbc.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/18/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
This work has been prepared to find out changes in the biochemicals with DNA damage, micronucleus, and apoptosis to lipopolysaccharides (LPS) alone or vitamin E (VE) and sodium selenite (SS) in rats' blood tissue. Rats were divided into eight groups according to the treatment into control vitamin E (VE) treatment group (200 mg/kg bw), sodium selenite (SS) treatment (0.35 mg/kg bw) group, VE + SS treatment group (200 + 0.35 mg/kg bw), LPS treatment group (10 mg/kg bw), LPS + VE (10 + 200 mg/kg bw), LPS + SS treatment (10 + 0.35 mg/kg bw), and LPS + SS+VE treatment (10 + 0.35 + 200 mg/kg bw) group for 6 hr. LPS increased malondialdehyde (MDA) level and decreased antioxidant enzymes' activities in rat erythrocytes and leukocytes. DNA damage of leukocytes with comet assay and RAPD-PCR was detected in LPS treatment group. The levels of micronucleus and apoptosis percentage were increased significantly at the end of 6 hr. VE and/or SS protected the LPS-induced erythrocytes and leukocytes against damage as they have caused amelioration of rats by altering the results. As a result, the co-administration of VE and/or SS against LPS-induced damage provides protection. VE and/or SS in patients and animal models with sepsis must be taken in the diet because they are protective against the cellular degradation caused by oxidative damage. PRACTICAL APPLICATIONS: LPS obtained from E. coli is used more frequently in experimental sepsis studies. When LPS is administered to experimental animals, interstitial pneumonia, adult respiratory fatal syndrome, acute tubular necrosis, and fatal effects such as coagulopathy and hypoglycemia may be seen in these animals. The co-treatment of VE and SS may be more effective than using them alone against LPS.
Collapse
Affiliation(s)
- Zehra İlce
- Graduate School of Natural and Applied Sciences, Department of Biology, Bozok University, Yozgat, Turkey
| | - Fatih Oğuz Bekdemir
- Graduate School of Natural and Applied Sciences, Department of Biology, Bozok University, Yozgat, Turkey
| | - Dilek Pandır
- Faculty of Arts and Science, Department of Biology, Bozok University, Yozgat, Turkey
| |
Collapse
|
5
|
Ilçe F, Gök G, Pandir D. Acute effects of lipopolysaccharide (LPS) in kidney of rats and preventive role of vitamin E and sodium selenite. Hum Exp Toxicol 2019; 38:547-560. [PMID: 30630368 DOI: 10.1177/0960327118817106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipopolysaccharide (LPS) as an endotoxin forms part of the cell wall of gram-negative bacteria and is responsible for initiating an acute inflammation after entering the living tissue. In this study, male rats were divided into eight groups: control group, vitamin E (VE) treatment group (200 mg/kg body weight (b.w.)), sodium selenite (SS) treatment (0.35 mg/kg b.w.) group, VE + SS treatment group (200 + 0.35 mg/kg b.w.), LPS treatment group (10 mg/kg b.w.), LPS + VE (10+200 mg/kg b.w.), LPS + SS treatment (10 + 0.35 mg/kg b.w.), and LPS + SS + VE treatment (10 + 0.35 + 200 mg/kg b.w.) group. Oxidative stress parameters, pathological changes, immunohistochemical analyses, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling (TUNEL) assay, and changes in DNA structure with comet assay of the kidney were investigated at the end 6 h comparatively with the control group. When LPS-treated group was compared with the control group, antioxidant enzyme activities were decreased and malondialdehyde (MDA) levels, changes in histological and DNA structure and apoptosis were increased significantly at the end of 6 h. However, when LPS + SS and/or VE-treated group were compared with the LPS-treated group, superoxide dismutase, catalase, glutathione peroxidase, and glutathione- S-transferase activities were increased and MDA levels were decreased significantly at the end of the treatment period. Light investigations figured out pathological changes in kidneys of LPS- and LPS + SS and/or VE-treated groups. There was a decrease in the number of proliferating cell nuclear antigen-positive cells and an increase in the number of TUNEL-positive apoptotic cells in the wall of the distal and proximal tubules. As a result, it was observed that the combined use of antioxidants was more protective than their use alone against LPS.
Collapse
Affiliation(s)
- F Ilçe
- 1 Department of Biology, Graduate School of Natural and Applied Sciences, Bozok University, Divanliyolu/Yozgat, Turkey
| | - G Gök
- 2 Department of Biology, Faculty of Arts and Science, Bozok University, Divanliyolu/Yozgat, Turkey
| | - D Pandir
- 2 Department of Biology, Faculty of Arts and Science, Bozok University, Divanliyolu/Yozgat, Turkey
| |
Collapse
|
6
|
Hamza RZ, Al-Juaid NS, Althubaiti EH. Antioxidant Effect of Carnosine on Aluminum Oxide Nanoparticles (Al2O3-NPs)-induced Hepatotoxicity and Testicular Structure Alterations in Male Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.740.750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Substance P blocks ethanol-induced hepatotoxicity. Life Sci 2018; 203:268-275. [DOI: 10.1016/j.lfs.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
|
8
|
Fouad AA, Qutub HO, Al Rashed AS, Al-Melhim WN. Therapeutic effect of carnosine in rat model of experimental liver carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:10-14. [PMID: 28863318 DOI: 10.1016/j.etap.2017.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The possible anticancer effect of carnosine versus doxorubicin was investigated against hepatocellular carcinoma (HCC) induced by trichloroacetic acid (TCA) (500mg/kg/day, p.o., for 5days) in rats. Following induction of HCC, rats treated with either carnosine (10mg/kg/day, i.p.), or doxorubicin (2.5mg/kg, i.p., once weekly), for 2 weeks. Carnosine significantly decreased serum alanine aminotransferase, and hepatic lipid peroxidation, nitric oxide, tumor necrosis factor-α, and nuclear factor-κB p65 unit, and significantly increased liver total antioxidant status in TCA-challenged rats. The effects of doxorubicin on oxidative, nitrative, and inflammatory biomarkers were less significant than carnosine. However, both carnosine and doxorubicin significantly induced liver tissue apoptotic biomarkers, Bax, cytosolic cytochrome C, and caspase-3, in a comparable manner. Additionally, carnosine and doxorubicin reduced the histopathological dysplastic changes, and alpha-fetoprotein expression in liver of rats with HCC. It was concluded that carnosine significantly protected against TCA-induced liver carcinogenesis in rats, through its antioxidant, antinitrative, and anti-inflammatory effects, and induction of apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- Biomedical Sciences Department, Division of Pharmacology, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Hatem O Qutub
- Internal Medicine Department, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | - Abdullatif S Al Rashed
- Student Research Committee, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Walid N Al-Melhim
- Biomedical Sciences Department, Division of Histopathology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
9
|
Preventive Effects of Carnosine on Lipopolysaccharide-induced Lung Injury. Sci Rep 2017; 7:42813. [PMID: 28205623 PMCID: PMC5311717 DOI: 10.1038/srep42813] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute lung injury, which involves neutrophilic inflammation and pulmonary cell death. Reactive oxygen species (ROS) play important roles in ARDS development. New compounds for inhibiting the onset and progression of ARDS are required. Carnosine (β-alanyl-L-histidine) is a small di-peptide with numerous activities, including antioxidant effects, metal chelation, proton buffering capacity and the inhibition of protein carbonylation and glycoxidation. We have examined the preventive effects of carnosine on tissue injury, oedema and inflammation in a murine model for ARDS. Oral administration of carnosine suppressed lipopolysaccharide (LPS)-induced vascular permeability, tissue injury and inflammation in the lung. In vivo imaging analysis revealed that LPS administration increased the level of ROS and that this increase was inhibited by carnosine administration. Carnosine also suppressed LPS-induced neutrophilic inflammation (evaluated by activation of myeloperoxidase in the lung and increased extracellular DNA in bronchoalveolar lavage fluid). Furthermore, carnosine administration suppressed the LPS-induced endoplasmic reticulum stress response in vivo. These results suggest that the oral administration of carnosine suppresses LPS-induced lung injury via carnosine's ROS-reducing activity. Therefore, carnosine may be beneficial for suppressing the onset and progression of ARDS.
Collapse
|
10
|
Ozkol H, Bulut G, Balahoroglu R, Tuluce Y, Ozkol HU. Protective Effects of Selenium, N-Acetylcysteine and Vitamin E Against Acute Ethanol Intoxication in Rats. Biol Trace Elem Res 2017; 175:177-185. [PMID: 27250492 DOI: 10.1007/s12011-016-0762-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 05/24/2016] [Indexed: 12/11/2022]
Abstract
The aim of this study was to determine possible protective influences of selenium (Se), N-acetylcysteine (NAC), and vitamin E (Vit E) against acute ethanol (EtOH) intoxication. Thirty-six rats were divided into six groups: I (control), II (EtOH), III (EtOH + Se), IV (EtOH + Vit E), V (EtOH + NAC), and VI (EtOH + mix). Except group I, EtOH was given the other pretreated (groups III, IV, V, and VI) and untreated groups (group II). Compared with the EtOH group, serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, creatine kinase, and creatine kinase-MB levels were significantly decreased in all pretreated groups, whereas slightly diminished amylase and lipase were observed. Compared with the control group, a remarkably lower total antioxidant status (TAS), but higher total oxidant status (TOS), and oxidative stress index (OSI) were seen in brain, liver, and kidney tissues. The values of these parameters were less affected from EtOH-exposed brain tissue of EtOH + NAC and liver of EtOH + mix groups. Both significant decrease of catalase activity and marked increases of adenosine deaminase and myeloperoxidase were determined only in liver tissue of the EtOH group. Activities of these enzymes were restored in almost all pretreated groups. Moreover, an increase of xanthine oxidase activity was prevented in brain tissue of pretreated groups. In histopathological examination of the liver, hydropic degeneration, sinusoidal dilatation, mononuclear cell infiltration, and marked congestion, which were seen in the EtOH group, were prevented in all pretreated groups. Relative protection against acute EtOH toxicity, in both single and combined pretreatments of Se, NAC, and Vit E supplementation, was probably through antioxidant and free radical-neutralizing effects of foregoing materials.
Collapse
Affiliation(s)
- Halil Ozkol
- Department of Medical Biology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Gulay Bulut
- Department of Pathology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Ragıp Balahoroglu
- Department of Biochemistry, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Yasin Tuluce
- Department of Medical Biology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Hatice Uce Ozkol
- Department of Dermatology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey.
| |
Collapse
|
11
|
Cong J, Zhang L, Li J, Wang S, Gao F, Zhou G. Effects of dietary supplementation with carnosine on meat quality and antioxidant capacity in broiler chickens. Br Poult Sci 2016; 58:69-75. [PMID: 27845563 DOI: 10.1080/00071668.2016.1237767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. This study aimed to investigate the effects of carnosine supplementation on meat quality, antioxidant capacity and lipid peroxidation status in broiler chickens. 2. A total of 256 1-d-old male Arbor Acres broilers were randomly assigned to 4 treatments consisting of 8 replicates of 8 chickens each. The birds were supplied with 4 different diets: a basal diet or a basal diet supplemented with 100, 200 or 400 mg/kg carnosine, respectively. The whole experiment lasted 42 d. 3. The results showed that dietary supplementation with carnosine linearly increased the values of pH45 min and redness and reduced drip loss of breast meat. Dietary carnosine increased the activity of antioxidant enzymes in liver, serum and breast meat and decreased the contents of lipid peroxides at 21 and 42 d of age. 4. These findings indicated that dietary supplementation with carnosine was beneficial to enhance meat quality, antioxidant capacity and decrease lipid peroxidation status of breast meat.
Collapse
Affiliation(s)
- J Cong
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - L Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - J Li
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - S Wang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - F Gao
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - G Zhou
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| |
Collapse
|