1
|
Ge Y, Chen L, Sun X, Yin Z, Song X, Li C, Liu J, An Z, Yang X, Ning H. Lead-induced changes of cytoskeletal protein is involved in the pathological basis in mice brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11746-11753. [PMID: 29442309 DOI: 10.1007/s11356-018-1334-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Lead poisoning is a geochemical disease. On the other hand, lead is highly carcinogenic and exhibits liver and kidney toxicity. This element can also cross the blood-brain barrier, reduce learning and memory ability and damage the structure of the cerebral cortex and hippocampus. To further investigate the mechanism of lead neurotoxicity, 4-week-old Kunming mice were used to explore the effects of different concentrations of Pb2+ (0, 2.4, 4.8 and 9.6 mM) for 9 days. In this study, pathological and ultrastructural changes in brain cells of the treated group were related to damages to mitochondria, chromatin and the nucleus. Lead content in blood was tested by atomic absorption spectroscopy, which showed high lead concentrations in the blood with increasing doses of lead. Distribution of lead in nerve cells was analysed by transmission electron microscopy with energy dispersive spectroscopy. Data showed the presence of lead in nucleopores, chromatin and nuclear membrane of nerve cells in the treatment groups, whereas lead content increased with increasing doses of lead acetate. Finally, microtubule-associated protein 2 (MAP2) mRNA and protein expression levels were detected by real-time PCR and Western blotting, which showed a reduction in MAP2 expression with increasing lead doses in the mouse brain. These findings suggest that acute lead poisoning can cause significant dose-dependent toxic effects on mouse brain function and can contribute to better understanding of lead-induced toxicity.
Collapse
Affiliation(s)
- Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Shanxi Agriculture University, Taigu, 030801, China
| | - Xianghe Sun
- Nanle Buteau of Agriculture and Animal Husbandry, Puyang, 457400, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaochao Song
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Chong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Junwei Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zhixing An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xuefeng Yang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Wang C, Wang J, Wang X, Xia Y, Chen C, Shen Z, Chen Y. Proteomic analysis on roots of Oenothera glazioviana under copper-stress conditions. Sci Rep 2017; 7:10589. [PMID: 28878286 PMCID: PMC5587583 DOI: 10.1038/s41598-017-10370-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/04/2017] [Indexed: 01/20/2023] Open
Abstract
Proteomic studies were performed to identify proteins involved in the response of Oenothera glazioviana seedlings under Cu stress. Exposure of 28-d-old seedlings to 50 μM CuSO4 for 3 d led to inhibition of shoot and root growth as well as a considerable increase in the level of lipid peroxidation in the roots. Cu absorbed by O. glazioviana accumulated more easily in the root than in the shoot. Label-free proteomic analysis indicated 58 differentially abundant proteins (DAPs) of the total 3,149 proteins in the roots of O. glazioviana seedlings, of which 36 were upregulated and 22 were downregulated under Cu stress conditions. Gene Ontology analysis showed that most of the identified proteins could be annotated to signal transduction, detoxification, stress defence, carbohydrate, energy, and protein metabolism, development, and oxidoreduction. We also retrieved 13 proteins from the enriched Kyoto Encyclopaedia of Genes and Genomes and the protein-protein interaction databases related to various pathways, including the citric acid (CA) cycle. Application of exogenous CA to O. glazioviana seedlings exposed to Cu alleviated the stress symptoms. Overall, this study provided new insights into the molecular mechanisms of plant response to Cu at the protein level in relation to soil properties.
Collapse
Affiliation(s)
- Chong Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chen Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yahua Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Suman S, Mishra S, Shukla Y. Toxicoproteomics in human health and disease: an update. Expert Rev Proteomics 2016; 13:1073-1089. [DOI: 10.1080/14789450.2016.1252676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shankar Suman
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Sanjay Mishra
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Yogeshwer Shukla
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| |
Collapse
|