1
|
Wang L, Liu B, Shi L, Yan J, Tan W, Li C, Jia B, Wen W, Zhu K, Bai Z, Zhang W, Morawska L, Chen J, Wang J. Diverse Metabolic Effects of Cooking Oil Fume from Four Edible Oils on Human BEAS-2B Cells: Implications for Health Guidelines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1462-1472. [PMID: 38155590 DOI: 10.1021/acs.est.3c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The 2021 WHO guidelines stress the importance of measuring ultrafine particles using particle number concentration (PNC) for health assessments. However, commonly used particle metrics such as aerodynamic diameter and number concentrations do not fully capture the diverse chemical makeup of complex particles. To address this issue, our study used high-throughput mass spectrometry to analyze the properties of cooking oil fumes (COFs) in real time and evaluate their impact on BEAS-2B cell metabolism. Results showed insignificant differences in COF number size distributions between soybean oil and olive oil (peak concentrations of 5.20 × 105/cm3), as well as between corn oil and peanut oil (peak concentrations of 4.35 × 105/cm3). Despite the similar major chemical components among the four COFs, variations in metabolic damage were observed, indicating that the relatively small amount of chemical components of COFs can also influence particle behavior within the respiratory system, thereby impacting biological responses. Additionally, interactions between accompanying gaseous COFs and particles may alter their chemical composition through various mechanisms, introducing additional chemicals and modifying existing proportions. Hence, the chemical composition and gaseous components of COFs hold equal importance to the particle number concentration (PNC) when assessing their impact on human health. The absence of these considerations in the current guidelines underscores a research gap. It is imperative to acknowledge that for a more comprehensive approach to safeguarding public health, guidelines must be regularly updated to reflect new scientific findings and robust epidemiological evidence.
Collapse
Affiliation(s)
- Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bailiang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Longbo Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Wen Tan
- TOFWERK, Nanjing 211800, China
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Wen Wen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhe Bai
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaxi Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Prakasham K, Gurrani S, Wu CF, Wu MT, Hsieh TJ, Peng CY, Huang PC, Krishnan A, Tsai PC, Lin YC, Tsai B, Lin YC, Ponnusamy VK. Rapid identification and monitoring of cooking oil fume-based toxic volatile organic aldehydes in lung tissue for predicting exposure level and cancer risks. CHEMOSPHERE 2023; 339:139704. [PMID: 37536542 DOI: 10.1016/j.chemosphere.2023.139704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/08/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Cooking oil fumes (COFs) comprised of a mixture of cancer-causing volatile organic aldehydes (VOAs), particularly trans, trans-2,4-decadienal (t,t-DDE), 4-hydroxy-hexenal (4-HHE), and 4-hydroxy-nonenal (4-HNE). Monitoring toxic VOAs levels in people exposed to different cooking conditions is vital to predicting the cancer risk. For this purpose, we developed a fast tissue extraction (FaTEx) technique combined with UHPLC-MS/MS to monitor three toxic VOAs in mice lung tissue samples. FaTEx pre-treatment protocol was developed by combining two syringes for extraction and clean-up process. The various procedural steps affecting the FaTEx sample pre-treatment process were optimized to enhance the target VOAs' extraction efficiency from the sample matrix. Under the optimal experimental conditions, results exhibit good correlation coefficient values > 0.99, detection limits were between 0.5-3 ng/g, quantification limits were between 1-10 ng/g, and the matrix effect was <18.1%. Furthermore, the extraction recovery values of the spiked tissue exhibited between 88.9-109.6% with <8.6% of RSD. Cooking oil fume (containing t,t-DDE) treated mice at various time durations were sacrificed to validate the developed technique, and it was found that t,t-DDE concentrations were from 14.8 to 33.8 μg/g. The obtained results were found to be a fast, reliable, and semi-automated sample pre-treatment technique with good extraction efficiency, trace level detection limit, and less matrix effect. Therefore, this method can be applied as a potential analytical method to determine the VOAs in humans exposed to long-term cooking oil fumes.
Collapse
Affiliation(s)
- Karthikeyan Prakasham
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Swapnil Gurrani
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; International Master Program of Translational Medicine, College of Engineering and Science, National United University, Miaoli, Taiwan.
| | - Ming-Tsang Wu
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Chiung-Yu Peng
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Po-Chin Huang
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County, 35053, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Anbarasu Krishnan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Pei-Chien Tsai
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Yu-Chia Lin
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Bongee Tsai
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Yuan-Chung Lin
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Vinoth Kumar Ponnusamy
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
3
|
Sun S, Zhang C, Zhang Q, Li C, Huang D, Ding R, Cao J, Hao J. Role of ROS-mediated PERK/ATF4 signaling activation in extracorporeal tube formation injury of human umbilical vein endothelial cells induced by cooking oil fume PM 2.5 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115332. [PMID: 37611476 DOI: 10.1016/j.ecoenv.2023.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
Cooking oil fume-derived PM2.5 (COF-PM2.5) is a major source of indoor air contamination in China, which has been demonstrated to be a hazard factor of cardiovascular and cerebrovascular diseases. This study aimed to investigate the role of ROS-mediated PERK/ATF4 signaling activation in COF-PM2.5-inhibited extracorporeal tube formation in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with 100 μg/mL COF-PM2.5 at different times, with or without 100 nM PERK activity inhibitor GSK2606414 (GSK) or 200 μM antioxidant N-acetylcysteine (NAC) pretreatment. Our results showed that COF-PM2.5 exposure can inhibit extracorporeal tube formation and down-regulate VEGFR2 expression in HUVECs. Furthermore, our data indicated that COF-PM2.5 exposure can activate the PERK/ATF4 signaling in HUVECs. Mechanistically, pretreatment with GSK interdicted PERK/ATF4 signaling, thereby reversing COF-PM2.5-downregulated VEGFR2 protein expression in HUVECs. Furthermore, NAC reversed VEGFR2 expression downregulated induced by COF-PM2.5 by inhibiting the upregulation of intracellular ROS levels and PERK/ATF4 signaling in HUVECs. As above, COF-PM2.5 exposure could induce ROS release from HUVECs, which in turn activate the endoplasmic reticulum PERK/ATF4 signaling and inhibit tube formation of HUVECs.
Collapse
Affiliation(s)
- Shu Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chao Zhang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qi Zhang
- Hefei Institutes of Physical Science Chinese Academy of Sciences, No 350 Shushanhu Road, Hefei 230001, Anhui, China
| | - Changlian Li
- Department of Environmental Health, Hefei Center for Disease Control and Prevention, No 86 Lu'an Road, Hefei 230061, Anhui, China
| | - Dan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jiyu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
4
|
Feng Y, Ma P, Wang Z, Shi Y, Wang Z, Peng Y, Jing L, Liu Y, Yu X, Wang X, Zhang X, Deng J, Dai H. Synergistic Effect of Reactive Oxygen Species in Photothermocatalytic Removal of VOCs from Cooking Oil Fumes over Pt/CeO 2/TiO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17341-17351. [PMID: 36413583 DOI: 10.1021/acs.est.2c07146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The volatile organic compounds (VOCs) from cooking oil fumes are very complex and do harm to humans and the environment. Herein, we develop the high-efficiency and energy-saving synergistic photothermocatalytic oxidation approach to eliminate the mixture of heptane and hexanal, the representative VOCs with high concentrations in cooking oil fumes. The Pt/CeO2/TiO2 catalyst with nanosized Pt particles was prepared by the simple hydrothermal and impregnation methods, and the physicochemical properties of the catalyst were measured using numerous techniques. The Pt/CeO2/TiO2 catalyst eliminated the VOC mixture at low light intensity (100 mW cm-2) and low temperature (200 °C). In addition, it showed 25 h of catalytic stability and water resistance (water concentration up to 20 vol %) at 140 or 190 °C. It is concluded that O2 picked up the electrons from Pt to generate the •O2- species, which were transformed to the O22- and O- species after the rise in temperature. In the presence of water, the •OH species induced by light irradiation on the catalyst surface and the •OOH species formed via the thermal reaction were both supplementary oxygen species for VOC oxidation. The synergistic interaction of photo- and thermocatalysis was generated by the reactive oxygen species.
Collapse
Affiliation(s)
- Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Peijie Ma
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yijie Shi
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaofan Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
5
|
Ji X, Li C, Zhu X, Yu W, Cai Y, Zhu X, Lu L, Qian Q, Hu Y, Zhu X, Wang H. Methylcobalamin Alleviates Neuronal Apoptosis and Cognitive Decline Induced by PM2.5 Exposure in Mice. J Alzheimers Dis 2022; 86:1783-1796. [DOI: 10.3233/jad-215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Fine particulate matter (particulate matter 2.5, PM2.5) is considered one of the harmful factors to neuronal functions. Apoptosis is one of the mechanisms of neuronal injury induced by PM2.5. Methylcobalamine (MeCbl) has been shown to have anti-apoptotic and neuroprotective effects. Objective: The current work tried to explore the neuroprotective effects and mechanisms that MeCbl protects mice against cognitive impairment and neuronal apoptosis induced by chronic real-time PM2.5 exposure. Methods: Twenty-four 6-week-old male C57BL/6 mice were exposed to ambient PM2.5 and fed with MeCbl for 6 months. Morris water maze was used to evaluate the changes of spatial learning and memory ability in mice. PC12 cells and primary hippocampal neurons were applied as the in vitro model. Cell viability, cellular reactive oxygen species (ROS) and the expressions of apoptosis-related proteins were examined. And cells were stained with JC-1 and mitochondrial membrane potential was evaluated. Results: In C57BL/6 mice, MeCbl supplementation alleviated cognitive impairment and apoptosis-related protein expression induced by PM2.5 exposure. In in vitro cell model, MeCbl supplementation could effectively rescued the downregulation of cell viability induced by PM2.5, and inhibited the increased levels of ROS, cellular apoptosis, and the expressions of apoptosis related proteins related to PM2.5 treatment, which may be associated with modulation of mitochondrial function. Conclusion: MeCbl treatment alleviated cognitive impairment and neuronal apoptosis induced by PM2.5 both in vivo and in vitro. The mechanism for the neuroprotective effects of MeCbl may at least partially dependent on the regulation of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Xintong Ji
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Chenxia Li
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Xiaozheng Zhu
- School of Basic Medical Sciences, Hangzhou Normal University, China
| | - Wenlei Yu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yanyu Cai
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Xinyi Zhu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Linjie Lu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Qiwei Qian
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yu Hu
- School of Basic Medical Sciences, Hangzhou Normal University, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, China
| | - Huanhuan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| |
Collapse
|
6
|
Ding R, Li J, Zhang Q, Zhang C, Li N, Sun S, Li C, Shen C, Zhao Q, Chen H, Hao J, Cao J. Vitamin D 3 protects intrauterine growth restriction induced by cooking oil fume derived fine particulate matters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113103. [PMID: 34929501 DOI: 10.1016/j.ecoenv.2021.113103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cooking oil fume (COF) is an important source of indoor air pollution which severely affects human health, and sufficient vitamin D3 (VitD3) is necessary for maternal and child health. However, the effects of cooking oil fume-derived PM2.5 (COF-PM2.5) on birth outcomes and whether VitD3 could protect from adverse effects caused by COFs-PM2.5 are still unclear. METHODS Twenty-four pregnant rats were divided into 4 groups and treated with various treatments: normal feeding, COFs-PM2.5 intratracheal instillation, VitD3 intragastric administration, and COFs-PM2.5 and VitD3 co-treatment, respectively. The fetal rats were obtained in pregnant 21 days and the development of them was recorded. Morphological changes in umbilical cord were measured with HE staining, and the oxidative stress and inflammatory levels were also investigated. Western blotting and RT-PCR was used to detect the expression of angiogenesis related factors. RESULTS We successfully established an intrauterine growth restriction model in rats induced by COFs-PM2.5 where fetus weight significantly decreased after COFs-PM2.5 exposure. As for the umbilical cord vasculature, the wall thickened and the lumen narrowed down, and the contractility of the umbilical cord vasculature enhanced after COFs-PM2.5 exposure. COFs-PM2.5 exposure also increased the oxidative stress and inflammation level and activated the HIF-1α/eNOS/NO and VEGF/VEGFR2/eNOS signaling pathway. Interestingly, VitD3 intervention significantly increased the fetus weight and attenuated the injury of umbilical cord vascular, and partly or completely reversed the changes in the ROS/eNOS/ET-1 axis caused by COF-PM2.5. CONCLUSIONS The findings of this study suggested that COF-PM2.5 exposure could contribute to intrauterine growth restriction through disturbing the ROS/eNOS/ET-1 axis, while VitD3 supplementation could be an effective prophylactic measurement.
Collapse
Affiliation(s)
- Rui Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Jing Li
- Anqing Medical College, Anqing, Anhui, China.
| | - Qi Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Na Li
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Shu Sun
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Changlian Li
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Chaowei Shen
- Department of Hospital Infection Management Office, Lu'an People's Hospital, Lu'an, Anhui, China.
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Jiyu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
7
|
Zhu X, Shou Y, Ji X, Hu Y, Wang H. S-adenosylmethionine decarboxylase 1 and its related spermidine synthesis mediate PM 2.5 exposure-induced neuronal apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112678. [PMID: 34419641 DOI: 10.1016/j.ecoenv.2021.112678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 exposure is considered harmful to central nerve system, while the specific biochemical mechanism underlying is still unrevealed. Neuronal apoptosis is believed the crucial event in pathogenesis of neurodegenerative diseases, but evidence supporting neuronal apoptosis as the mechanism for PM2.5 exposure induced neuronal injury is insufficient. S-adenosylmethionine decarboxylase 1 (AMD1) and its related spermidine synthesis have been shown to associate with cellular apoptosis, but its role in PM2.5 exposure induced neuronal apoptosis was rarely reported. The current study was aimed to better understand contribution of AMD1 activity and spermidine in PM2.5 exposure induced neuronal apoptosis. Sixteen C57BL/6 male mice were randomly divided and kept into ambient PM2.5 chamber or filtered air chamber for 6 months to establish the mouse model of whole-body ambient PM2.5 chronic exposure. In parallel, PC12 cells and primary hippocampal neurons were applied for various concentrations of PM2.5 treatment (0, 25, 50, 100, 200, and 400 μg/mL) to explore the possible cellular and molecular mechanism which may be critically involved in the process. Results showed that PM2.5 exposure triggered neuronal apoptosis with increased expression of Bax/Bcl-2 and cleaved caspase-3. PM2.5 exposure reduced AMD1 expression and spermidine synthesis. AMD1 inhibition could mimic PM2.5 exposure induced neuronal apoptosis. Spermidine supplementation rescued against neurotoxicity and inhibited PM2.5 induced apoptosis via impaired depolarization of mitochondrial membrane potential and reduced mitochondrial apoptosis related proteins. In summary, our work demonstrated that exposure to PM2.5 led to neuronal apoptosis, which may be the key event in the process of air pollution induced neurodegenerative diseases. AMD1 and spermidine associated with neuronal apoptosis induced by PM2.5 exposure, which was at least partially dependent on mitochondria mediated pathway.
Collapse
Affiliation(s)
- Xiaozheng Zhu
- School of Medicine, Hangzhou Normal University, China
| | - Yikai Shou
- School of Medicine, Hangzhou Normal University, China; The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China
| | - Xintong Ji
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yu Hu
- School of Medicine, Hangzhou Normal University, China.
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China.
| |
Collapse
|
8
|
Oxidative Stress Biomarkers in the Relationship between Type 2 Diabetes and Air Pollution. Antioxidants (Basel) 2021; 10:antiox10081234. [PMID: 34439482 PMCID: PMC8388875 DOI: 10.3390/antiox10081234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
The incidence and prevalence of type 2 diabetes have increased in the last decades and are expected to further grow in the coming years. Chronic hyperglycemia triggers free radical generation and causes increased oxidative stress, affecting a number of molecular mechanisms and cellular pathways, including the generation of advanced glycation end products, proinflammatory and procoagulant effects, induction of apoptosis, vascular smooth-muscle cell proliferation, endothelial and mitochondrial dysfunction, reduction of nitric oxide release, and activation of protein kinase C. Among type 2 diabetes determinants, many data have documented the adverse effects of environmental factors (e.g., air pollutants) through multiple exposure-induced mechanisms (e.g., systemic inflammation and oxidative stress, hypercoagulability, and endothelial and immune responses). Therefore, here we discuss the role of air pollution in oxidative stress-related damage to glycemic metabolism homeostasis, with a particular focus on its impact on health. In this context, the improvement of new advanced tools (e.g., omic techniques and the study of epigenetic changes) may provide a substantial contribution, helping in the evaluation of the individual in his biological totality, and offer a comprehensive assessment of the molecular, clinical, environmental, and epidemiological aspects.
Collapse
|
9
|
Ain NU, Qamar SUR. Particulate Matter-Induced Cardiovascular Dysfunction: A Mechanistic Insight. Cardiovasc Toxicol 2021; 21:505-516. [PMID: 33886046 DOI: 10.1007/s12012-021-09652-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Air pollution and particulate matter (PM) are significant factors for adverse health effects most prominently cardiovascular disease (CVD). PM is produced from various sources, which include both natural and anthropogenic. It is composed of biological components, organic compounds, minerals, and metals, which are responsible for inducing inflammation and adverse health effects. However, the adverse effects are related to PM size distribution. Finer particles are a significant cause of cardiovascular events. This review discusses the direct and indirect mechanisms of PM-induced CVD like myocardial infarction, the elevation of blood pressure, cardiac arrhythmias, atherosclerosis, and thrombosis. The two potential mechanisms are oxidative stress and systemic inflammation. Prenatal exposure has also been linked with cardiovascular outcomes later in life. Moreover, we also mentioned the epidemiological studies that strongly associate PM with CVD.
Collapse
Affiliation(s)
- Noor Ul Ain
- Departmetnt of Environmental Sciences, Fatima Jinnah Women University, The Mall Road, Kachari Chowk, Rawalpindi, 46000, Pakistan
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Safi Ur Rehman Qamar
- Integrated Genomics, Cellular, Developmental, and Biotechnology Laboratory (IGCDBL), University of Agriculture, Faisalabad, Punjab, 38000, Pakistan.
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand.
| |
Collapse
|
10
|
Ma Y, Deng L, Ma P, Wu Y, Yang X, Xiao F, Deng Q. In vivo respiratory toxicology of cooking oil fumes: Evidence, mechanisms and prevention. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123455. [PMID: 32683156 DOI: 10.1016/j.jhazmat.2020.123455] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As cooking is an essential part of people's daily life, cooking oil fumes (COF) has been recognized as one of the major indoor air pollutant. Mounting epidemiological evidence has indicated that COF exposure is significantly associated with an increased risk of various health effects including lung cancer, but toxicological studies are very limited. OBJECTIVES We conduct a systematic study to provide toxicological evidence of COF exposure on the lungs, to examine the underlying toxicological mechanism, and to suggest intervention measures to mitigate this toxicity. METHODS A total 96 female rats were randomly divided into control groups, COF exposure groups (0.2, 2, 20 mg/kg) and vitamin E protection groups, receiving appropriate treatment for 30 days. First we measured airway hyperresponsiveness (AHR) followed by a lung histological analysis to investigate the toxicological effects of COF. We next analyzed the biomarkers of oxidative stress, inflammation, and apoptosis to examine the underlying toxicological mechanism, and finally we investigated the protective effects of vitamin E against the toxicity of COF. RESULTS AHR measurement indicated that the airway resistance increased with the COF dose and the lung histological assay showed narrowing of the airway lumen, which provided evidence of the toxicological effects of COF. The biomarkers of oxidative stress (ROS and MDA), pro-inflammation (TNF-α and IL-1β), and apoptosis (NF-κB and Caspase-3) were all significantly increased with COF dose. We observed that above toxicological effects and biomarker levels induced by COF were significantly ameliorated after administration of VE. CONCLUSION The toxicity of cooking oil fumes on the lungs is clear from the evidence and mechanism, and can be ameliorated by vitamin E. We suggested that oxidative stress may be primarily responsible for the observed cooking oil fumes-induced toxicity.
Collapse
Affiliation(s)
- Yongsheng Ma
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Linjing Deng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Ping Ma
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| | - Yang Wu
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430070, China
| | - Fang Xiao
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| | - Qihong Deng
- XiangYa School of Public Health, Central South University, Changsha 410078, China; School of Energy Science and Engineering, Central South University, Changsha 410083, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Ding L, Sui X, Yang M, Zhang Q, Sun S, Zhu F, Cheng H, Zhang C, Chen H, Ding R, Cao J. Toxicity of cooking oil fume derived particulate matter: Vitamin D 3 protects tubule formation activation in human umbilical vein endothelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109905. [PMID: 31706245 DOI: 10.1016/j.ecoenv.2019.109905] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Cooking oil fumes-derived PM2.5 (COFs-derived PM2.5) is the main source of indoor pollution. Exposure to COFs-derived PM2.5 can cause oxidative stress and affect angiogenesis. Here we investigated the roles of vitamin D3 (VD3) in protecting tubule formation injury induced by COFs-derived PM2.5, and the roles of ROS/NLRP3/VEGF signaling pathway in the effects. Human umbilical vein endothelial cells (HUVECs) were exposed to 0 (1‰ DMSO), 1000 nmol/l VD3, 100 μg/ml PM2.5, and 1000 nmol/l VD3 + 100 μg/ml PM2.5, respectively. Cell viability and tube formation, as well as protein and mRNA levels were measured. The results showed that exposure of COFs-derived PM2.5 dose-and time-dependently reduced the viability of HUVECs, increased the levels of mitochondrial and intracellular ROS, and changed the mitochondrial membrane potential level. While co-incubation with VD3 rescued these adverse effects. Both Western blot and real-time PCR (RT-PCR) showed that the expressions of NLRP3, caspase-1, Interleukin (IL)-1β, and IL-18 in COFs-derived PM2.5 exposure group increased significantly, which could be effectively decreased by co-incubation with VD3. COFs-derived PM2.5 exposure could also reduce the expression of VEGF, while co-incubating HUVECs with VD3 evidently up-regulated the protein level of VEGF in HUVECs. In addition, COFs-derived PM2.5 could also inhibit the tube formation of HUVECs in vitro, which could be effectively rescued by the co-incubation of VD3. Our study proved that COFs-derived PM2.5 could damage the tubule formation of HUVECs in vitro, which could be effectively rescue by co-incubation with VD3, in which processes the ROS/NLRP3/VEGF signaling pathway played a crucial role. It provides a new theoretical basis for further study on the toxicity of PM2.5 to umbilical cord blood vessels.
Collapse
Affiliation(s)
- Liu Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Xinmiao Sui
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Mei Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Furong Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Han Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Chao Zhang
- Department of Environmental Health, Center for Disease Control and Prevention, Nanjing, China.
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical Universit, 15 Yimin Road, Hefei, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
12
|
Zhu F, Cheng H, Lei R, Shen C, Liu J, Hou L, Zhang C, Xu Y, Ding R, Cao J. Effects of cooking oil fume derived fine particulate matter on blood vessel formation through the VEGF/VEGFR2/MEK1/2/ERK1/2/mTOR pathway in human umbilical vein endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:112-119. [PMID: 31026735 DOI: 10.1016/j.etap.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
In China, cooking oil fume derived fine particulate matter (COF-derived PM2.5) is a principal source of indoor air pollution. Here, we investigated cytotoxicity of COF-derived PM2.5, as well as the roles of VEGF, VEGFR2, MEK1/2, ERK1/2, and mTOR cascade in the inhibitory effects of COF-derived PM2.5, on angiogenesis in human umbilical vein endothelial cells (HUVECs). After exposure to COF-derived PM2.5, cell viability and tube formation, as well as protein and mRNA levels of VEGF, VEGFR2, MEK1/2, ERK1/2, and mTOR in HUVECs were measured. Cell viability and number of tubes reduced dose-dependently after COF-derived PM2.5 and SU5416 treatment. In addition, SU5416 and VEGF significantly affected tube formation. The protein and mRNA levels of VEGF, VEGFR2, MEK1/2, ERK1/2, and mTOR all tended to reduce with the increase of COF-derived PM2.5 concentrations. These findings demonstrate that VEGF, VEGFR2, MEK1/2, ERK1/2, and mTOR play key roles in COF-derived PM2.5 induced inhibition of angiogenesis in HUVECs.
Collapse
Affiliation(s)
- Furong Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China
| | - Han Cheng
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China
| | - Ruoqian Lei
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China
| | - Chaowei Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China
| | - Jie Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China
| | - Lijuan Hou
- Xuzhou Centre for Disease Control and Prevention of Jiangsu, China
| | - Chao Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China
| | - Yachun Xu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China
| | - Rui Ding
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, 81Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
13
|
Shen C, Liu J, Zhu F, Lei R, Cheng H, Zhang C, Sui X, Ding L, Yang M, Chen H, Ding R, Cao J. The effects of cooking oil fumes-derived PM 2.5 on blood vessel formation through ROS-mediated NLRP3 inflammasome pathway in human umbilical vein endothelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:690-698. [PMID: 30878009 DOI: 10.1016/j.ecoenv.2019.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cooking oil fumes (COFs), a main pollutant in kitchen air, is a major risk to human health. In our previous research, exposure to COFs-derived PM2.5 could cause umbilical vascular endothelial dysfunction, leading to decreased fetal weight. Here, to test the role of ROS-mediated NLRP3 inflammasome pathway in blood vessel formation of human umbilical vein endothelial cells (HUVECs) caused by COFs-derived PM2.5, the cells were exposed to COFs-derived PM2.5 at different concentrations with and without N-acetyl-L-cysteine (NAC). METHODS MTT assay was used to determine HUVECs viability. Intracellular ROS and mitochondrial ROS levels were assessed with DCFH-DA and MitoSOX™ assay. The levels of proteins and mRNA involved in NLRP3 inflammasome signaling pathway and VEGF were measured by western blot and real-time PCR (RT-PCR). Tube formation in HUVECs was detected by tube formation assay. RESULTS The results revealed that COFs-derived PM2.5 exposure reduced HUVECs viability, increased the intracellular and mitochondrial ROS levels in cells, and up-regulated the levels of proteins and mRNA involved in NLRP3 inflammasome signaling pathway. However, the protein and mRNA expression of VEGF were reduced with the increasing exposure concentrations. In addition, COFs-derived PM2.5 also affected the tube formation. However, co-incubation with NAC effectively rescued the damages caused by COFs-derived PM2.5 exposure. CONCLUSIONS This study proved that COFs-derived PM2.5 could significantly reduce HUVECs viability, induce the overproduction of ROS, lead to inflammation and inhibit VEGF expression, thus affect angiogenesis of HUVECs in vitro. It was revealed that the impact caused by COFs-derived PM2.5 on blood vessel formation through a ROS-mediated NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Chaowei Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Jie Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Furong Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Ruoqian Lei
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Han Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Chao Zhang
- Department of Environmental Health, Center for Disease Control and Prevention, Nanjing, China.
| | - Xinmiao Sui
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Liu Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Mei Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical Universit, 15 Yimin Road, Hefei, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
14
|
Yi H, Huang Y, Tang X, Zhao S, Gao F, Xie X, Wang J, Yang Z. Mn-CeOx/MeOx(Ti, Al)/cordierite preparation with ultrasound-assisted for non-methane hydrocarbon removal from cooking oil fumes. ULTRASONICS SONOCHEMISTRY 2019; 53:126-133. [PMID: 30642803 DOI: 10.1016/j.ultsonch.2018.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Cooking oil fumes (COFs) which contains a variety of volatile organic compounds (VOCs) is noxious not only to the environment but also to human health. Among COFs, the Non-methane Hydrocarbon (NMHC) removal rate is an index of the removal rate of COFs in the latest COFs purification standard (DB 11/1488-2018). Ultrasonic treatment can assist the synthesis of catalysts by creating "cavitation", which can improve the surface microtopography of catalysts. The research results in this paper revealed that the NMHC conversion of catalysts with ultrasonic treatment increased significantly. Besides, the samples that coated TiO2 had a higher conversion of NMHC than that coated Al2O3 because TiO2 has better oxidation performance than Al2O3. According to the XPS, SEM, EDS and BET data, because of the enhancement of interaction of the active components of catalysts caused by ultrasonic intervention, T-UU-CTAB exhibited the best catalytic performance, which attributed to the high levels of Mn4+/Mn3+, Ce4+/Ce3+ and Oads/Olatt, more developed pore structure owing to the smaller particle size, higher dispersion of active components, larger specific surface area and larger total pore volume produced by the ultrasonic treatment. Moreover, the conversion of NMHC over T-UU-CTAB is 93.6% at 400 °C.
Collapse
Affiliation(s)
- Honghong Yi
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China
| | - Yonghai Huang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiaolong Tang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China.
| | - Shunzheng Zhao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China
| | - Fengyu Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, PR China
| | - Xizhou Xie
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jiangen Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhongyu Yang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
15
|
Lu F, Shen B, Yuan P, Li S, Sun Y, Mei X. The emission of PM 2.5 in respiratory zone from Chinese family cooking and its health effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:671-677. [PMID: 30448657 DOI: 10.1016/j.scitotenv.2018.10.397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
To investigate the PM2.5 emission in the direct exposed area from Chinese family cooking, eleven kinds of Chinese ordinary family cooking dishes were designed including frying, quick-frying, stewing, deep-frying, boiling and steaming according to the results of questionnaire survey. The results showed that the intensity sequence for PM2.5 emissions decreased as follows in general: deep-frying (0.709-2.731 mg/m3) > stir-frying (0.700-0.958 mg/m3) > stewing (~0.573 mg/m3) > quick-frying (0.140-0.433 mg/m3) > boiling (0.004-0.247 mg/m3) > steaming (0.011-0.088 mg/m3), most of them exceeded the national indoor air standard. The average concentration of PM2.5 in the direct respiratory zone from family cooking was determined to be 0.599 mg/m3, which was about 8 times higher than the national indoor air standard of China and lower than that from commercial restaurants. The annual PM2.5 inhalation exposure in the direct exposed area from family cooking for male and female was 346.30 mg/year and 309.59 mg/year, respectively. Although the annual PM2.5 inhalation exposure of male operators in general ordinary family cooking was about 11.8% higher than that of females, the pregnant women, children and the elderly are not encouraged to prepare ordinary family cooking for a long time due to their sensitive to PM2.5 emission. Selecting ventilator with high wind speed can reduce PM2.5 emission more than 65% when compared to medium wind speed. Improvement of ventilator wind speed is considered to be an effect way to reduce PM2.5 emission for cooking.
Collapse
Affiliation(s)
- Fengju Lu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Peng Yuan
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shuhao Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yating Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xue Mei
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
16
|
Hu P, Fan L, Ding P, He YH, Xie C, Niu Z, Tian FY, Yuan S, Jia D, Chen WQ. Association between prenatal exposure to cooking oil fumes and full-term low birth weight is mediated by placental weight. ENVIRONMENTAL RESEARCH 2018; 167:622-631. [PMID: 30172195 DOI: 10.1016/j.envres.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Evidence regarding the association between prenatal exposure to cooking oil fumes (COF) and full-term low birth weight (FTLBW) is still controversial, and the mechanism remains unclear. This study thus aims to explore the association of prenatal COF exposure with off-spring FT-LBW as well as the mediating role of placenta in their association. METHODS A case-control study enrolling 266 pregnant women delivering FTLBW newborns (cases) and 1420 delivering normal birth weight (NBW) newborns (controls) was conducted. Information on prenatal COF exposure, socio-demographics, and obstetric conditions were collected at the Women's and Children's Hospitals of Shenzhen and Foshan in Guangdong, China. Linear and hierarchical logistic regression models were undertaken to explore the associations among COF exposure, placenta and birth weight, as well as the mediation effect of placental weight. RESULTS After controlling for potential confounders, prenatal COF exposure was significantly associated with the higher risk of FT-LBW (OR = 1.31, 95% CI= 1.06-1.63) and the lower placental weight (ß = -0.12, 95% CI= -0.23 ~ -0.005). Compared with mothers who never cooked, those cooking sometimes (OR= 2.99, 95% CI= 1.48-6.04) or often (OR= 3.41, 95% CI= 1.40-8.34) showed a higher risk of FT-LBW, and likewise, those cooking for less than half an hour (OR= 2.08, 95% CI= 1.14-3.79) or cooking between half to an hour (OR= 2.48, 95% CI= 1.44-4.29) were also more likely to exhibit FT-LBW. Different cooking methods including pan-frying (OR= 2.24, 95% CI= 1.30-3.85) or deep-frying (OR= 1.78, 95% CI= 1.12-2.85) during pregnancy were associated with increased FT-LBW risks as well. The further mediation analysis illustrated that placental weight mediated 15.96% (95% CI: 12.81~28.80%) and 15.90% (95% CI= 14.62%~16.66%) of the associations of cooking during pregnancy and frequency of prenatal COF exposure, respectively, with FT-LBW.
Collapse
Affiliation(s)
- Pian Hu
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Lijun Fan
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Peng Ding
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Yan-Hui He
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Chuanbo Xie
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Zhongzheng Niu
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Fu-Ying Tian
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Shixin Yuan
- Shenzhen Women's and Children's Hospital, Shenzhen, China
| | - Deqin Jia
- Foshan Women's and Children's Hospital, Foshan, China
| | - Wei-Qing Chen
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China; Department of Information Management, Xinhua College, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Ding R, Zhang C, Zhu X, Cheng H, Zhu F, Xu Y, Liu Y, Wen L, Cao J. ROS-AKT-mTOR axis mediates autophagy of human umbilical vein endothelial cells induced by cooking oil fumes-derived fine particulate matters in vitro. Free Radic Biol Med 2017; 113:452-460. [PMID: 29111231 DOI: 10.1016/j.freeradbiomed.2017.10.386] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
Cooking oil fumes-derived PM2.5 (COFs-derived PM2.5) exposure can induce oxidative stress and cytotoxic effects. Here we investigated the role of ROS-AKT-mTOR axis in COFs-derived PM2.5-induced autophagy in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with different concentrations of COFs-derived PM2.5, together with or without N-acetyl-L-cysteine (NAC, a radical scavenger) or 3-methyladenine (3-MA, an autophagy inhibitor). Cell viability was assessed with MTT assay, and ROS level was measured with DCFH-DA assay after the treatment. Transmission electron microscopy (TEM) was used to evaluate the formation of autophagosomes, while immunofluorescent assay and western blot were used to assess the expression of LC3-I/II and beclin 1. Proteins involved in the PI3K-AKT-mTOR signaling pathway were measured with western blot. The results showed that the treatment of COFs-derived PM2.5 dose-dependently reduced the viability of HUVECs and increased the ROS levels in the cells. Both immunofluorescent assay and western blot showed that treatment with COFs-derived PM2.5 significantly increased LC3-II and beclin 1 levels, as well as the ratio of LC3-II/LC3-I, which could be rescued by the co-incubation with NAC or 3-MA. TEM also confirmed the increased formation of autophagosomes in the cells treated with COFs-derived PM2.5, while co-treatment with NAC evidently decreased autophagosomes formation. In addition, western blot also showed that the phosphorylation of PI3K, AKT, and mTOR all decreased by the treatment of COFs-derived PM2.5, which was effectively rescued by the co-treatment with NAC. These findings demonstrate ROS-AKT-mTOR axis plays a critical role in HUVECs autophagy induced by COFs-derived PM2.5.
Collapse
Affiliation(s)
- Rui Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Chao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoxia Zhu
- Department of Chronic Disease Control and Prevention, Shanghai Putuo District Center for Disease Control and Prevention, Shanghai, China
| | - Han Cheng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Furong Zhu
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yachun Xu
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ying Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Longping Wen
- School of Medicine, South China University of Technology of China, Guangzhou, Guangdong, China.
| | - Jiyu Cao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|