1
|
Wu H, Zhang Y, Xu H, Xu B, Chen J, Guo L, Liu Q, Xie J. Urinary Profile of Alkylated DNA Adducts and DNA Oxidative Damage in Sulfur Mustard-Exposed Rats Revealed by Mass Spectrometry Quantification. Chem Res Toxicol 2023; 36:1495-1502. [PMID: 37625021 DOI: 10.1021/acs.chemrestox.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alkylation reagents, represented by sulfur mustard (SM), can damage DNA molecules directly as well as lead to oxidative stress, causing DNA lesions indirectly. Correspondingly, two types of biomarkers including alkylated DNA adducts and oxidative DNA adducts are commonly involved in the research of DNA damage evaluation caused by these agents. However, the correlations and differences of the occurrence, duration, severity, and traceability between alkylation and oxidation lesions on the DNA molecular level reflected by these two types of biomarkers have not been systematically studied. A simultaneous determination method for four alkylated DNA adducts, i.e., N7-(2-hydroxyethylthioethyl)2'-guanine (N7-HETEG), O6-(2-hydroxyethylthioethyl)-2'-guanine (O6-HETEG), N3-(2-hydroxyethylthioethyl)-2'-adenine (N3-HETEA), and bis(2-ethyl-N7-guanine)thioether (Bis-G), and the oxidative adduct 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in urine samples by isotope-dilution high-performance liquid chromatography-tandem mass spectrometry (ID-HPLC-MS/MS) was built with a lower limit of detection of 0.02 ng/mL (except Bis-G, 0.05 ng/mL) and a recovery of 79-111%. The profile of these adducts was simultaneously monitored in urine samples after SD rats' dermal exposure to SM in three dose levels (1, 3, and 10 mg/kg). The time-effect and dose-effect experiments revealed that when exposed to SM, DNA alkylation lesions would happen earlier than those of oxidation. For the two types of biomarkers, alkylated DNA adducts showed an obvious dose-effect relationship and could be used as internal exposure dose and effect biomarkers, while 8-OH-dG did not show a correlation with exposure dose, demonstrating that it was more suitable as a biomarker for DNA oxidative lesions but not an indicator for the extent of cytotoxicity and internal exposure.
Collapse
Affiliation(s)
- Haijiang Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Qin Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
2
|
Cheng X, Liu C, Yang Y, Liang L, Chen B, Yu H, Xia J, Liu S, Li Y. Advances in sulfur mustard-induced DNA adducts: Characterization and detection. Toxicol Lett 2021; 344:46-57. [PMID: 33705862 DOI: 10.1016/j.toxlet.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion. Various methods have been used to analyze DNA damage caused by SM. Among these methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology stands out and makes it possible to observe damage in view of biomarkers induced by SM. Sample preparation is critical for detection by LC-MS/MS and mainly includes DNA isolation, adduct hydrolysis, and adduct purification. Moreover, optimization of chromatographic conditions, selection of MS transitions, and quantitative strategies are also essential. SM-DNA adducts are generally considered to be N7-HETEG, O6-HETEG, N7-BisG, and N3-HETEA. This article proposes some other possibilities of SM-DNA adducts for the identification of SM genotoxicity.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Longhui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Yihe Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China.
| |
Collapse
|
3
|
Huang S, Chen M, Yu H, Lin K, Guo Y, Zhu P. Co‑expression of tissue kallikrein 1 and tissue inhibitor of matrix metalloproteinase 1 improves myocardial ischemia‑reperfusion injury by promoting angiogenesis and inhibiting oxidative stress. Mol Med Rep 2020; 23:166. [PMID: 33355364 PMCID: PMC7789088 DOI: 10.3892/mmr.2020.11805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/23/2020] [Indexed: 11/05/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a serious complication of reperfusion therapy for myocardial infarction. At present, there is not an effective treatment strategy available for myocardial I/R. The present study aimed to investigate the effects of human tissue kallikrein 1 (hTK1) and human tissue inhibitors of matrix metalloproteinase 1 (hTIMP1) gene co‑expression on myocardial I/R injury. A rat model of myocardial I/R injury and a cell model with hypoxia/reoxygenation (H/R) treatment in cardiac microvascular endothelial cells (CMVECs) were established, and treated with adenovirus (Ad)‑hTK1/hTIMP1. Following which, histological and triphenyl‑tetrazolium‑chloride staining assays were performed. Cardiac function was tested by echocardiographic measurement. The serum levels of oxidative stress biomarkers in rats and the intracellular reactive oxygen species (ROS) levels in CMVECs were measured. Additionally, experiments, including immunostaining, reverse transcription‑quantitative PCR, western blotting, and MTT, wound healing, Transwell and tube formation assays were also performed. The results of the present study demonstrated that Ad‑hTK1/hTIMP1 alleviated myocardial injury and improved cardiac function in myocardial I/R model rats. Ad‑hTK1/hTIMP1 also significantly enhanced microvessel formation, decreased matrix metalloproteinase (MMP)2 and MMP9 expression, and reduced oxidative stress in myocardial I/R model rats. Furthermore, Ad‑hTK1/hTIMP1 significantly enhanced proliferation, migration and tube formation in H/R‑treated CMVECs. Additionally, Ad‑hTK1/hTIMP1 significantly decreased intracellular ROS production and γ‑H2A.X variant histone expression levels in H/R‑treated CMVECs. In conclusion, the results of the present study demonstrated that co‑expression of hTK1 and hTIMP1 genes displayed significant protective effects on myocardial I/R injury by promoting angiogenesis and suppressing oxidative stress; therefore, co‑expression of hTK1 and hTIMP1 may serve as a potential therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Shujie Huang
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Meixian Chen
- Department of Cardiology, The 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, Fujian 350025, P.R. China
| | - Huizhen Yu
- Department of Cardiology, Fujian Provincial Hospital Jinshan Branch, Fuzhou, Fujian 350028, P.R. China
| | - Kaiyang Lin
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yansong Guo
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Pengli Zhu
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
4
|
Sadeghi S, Tapak M, Ghazanfari T, Mosaffa N. A review of Sulfur Mustard-induced pulmonary immunopathology: An Alveolar Macrophage Approach. Toxicol Lett 2020; 333:115-129. [PMID: 32758513 DOI: 10.1016/j.toxlet.2020.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
Despite many studies investigating the mechanism of Sulfur Mustard (SM) induced lung injury, the underlying mechanism is still unclear. Inflammatory and subsequent fibroproliferative stages of SM-toxicity are based upon several highly-related series of events controlled by the immune system. The inhalation of SM gas variably affects different cell populations within the lungs. Various studies have shown the critical role of macrophages in triggering a pulmonary inflammatory response as well as its maintenance, resolution, and repair. Importantly, macrophages can serve as either pro-inflammatory or anti-inflammatory populations depending on the present conditions at any pathological stage. Different characteristics of macrophages, including their differentiation, phenotypic, and functional properties, as well as interactions with other cell populations determine the outcomes of lung diseases and the extent of long- or short-term pulmonary damage induced by SM. In this paper, we summarize the current state of knowledge regarding the role of alveolar macrophages and their mediators in the pathogenesis of SM in pulmonary injury. Investigating the specific cells and mechanisms involved in SM-lung injury may be useful in finding new target opportunities for treatment of this injury.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Liu Y, Song Z, Chen X, Zhu Z, Zhang L, Hong Z, Chai Y. Nuclear magnetic resonance-based plasma metabolomics revealed the protective effect of tea polyphenols on sulfur mustard-induced injury in rats. J Pharm Biomed Anal 2020; 186:113278. [PMID: 32380352 DOI: 10.1016/j.jpba.2020.113278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/01/2022]
Abstract
Tea polyphenols (TP) are the major antioxidant components from tea, which could be beneficial to oxidative stress injury, such as sulfur mustard (SM) exposure. However, the holistic efficacy of TP on SM poisoning remains unexplored and needs further investigation. In this study, Nuclear magnetic resonance(NMR)-based metabolomics along with multivariate statistical analysis was used to explore the metabolic alteration after SM injury and the protective mechanism of TP. Thirteen potential plasma biomarkers of SM injury were identified, which primarily related to synthesis of ketone bodies, arginine and proline metabolism, butanoate metabolism and alanine aspartate and glutamate metabolism. After TP pre-treatment, the biomarkers were mostly restored to normal levels, which suggested that TP provided effective protection against SM injury and might play its role by rebalancing disordered metabolism pathways. This work enhanced our comprehension of the metabolic profiling of SM injury and revealed the protective mechanism of TP.
Collapse
Affiliation(s)
- Yue Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhiqiang Song
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Zhenyu Zhu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhanying Hong
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
6
|
DNA damage signaling in the cellular responses to mustard vesicants. Toxicol Lett 2020; 326:78-82. [PMID: 32173488 DOI: 10.1016/j.toxlet.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023]
Abstract
Mustard vesicants, including sulfur mustard (2,2'-dichlorodiethyl sulfide, SM) and nitrogen mustard (bis(2-chloroethyl)methylamine, HN2) are cytotoxic blistering agents synthesized for chemical warfare. Because they contain highly reactive electrophilic chloroethyl side chains, they readily react with cellular macromolecules like DNA forming monofunctional and bifunctional adducts. By targeting DNA, mustards can compromise genomic integrity, disrupt the cell cycle, and cause mutations and cytotoxicity. To protect against genotoxicity following exposure to mustards, cells initiate a DNA damage response (DDR). This involves activation of signaling cascades including ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3-related) and DNA-PKcs (DNA-dependent protein kinase, catalytic unit). Signaling induced by the DDR leads to the recruitment and activation of repair related proteins such as phospho H2AX and phospho p53 to sites of DNA lesions. Excessive DNA modifications by mustards can overwhelm DNA repair leading to single and double strand DNA breaks, cytotoxicity and tissue damage, sometimes leading to cancer. Herein we summarize DDR signaling pathways induced by SM, HN2 and the half mustard, 2-chloroethyl ethyl sulfide (CEES). At the present time, little is known about how mustard-induced DNA damage leads to the activation of DDR signaling. A better understanding of mechanisms by which mustard vesicants induce the DDR may lead to the development of countermeasures effective in mitigating tissue injury.
Collapse
|
7
|
Wahler G, Heck DE, Heindel ND, Laskin DL, Laskin JD, Joseph LB. Antioxidant/stress response in mouse epidermis following exposure to nitrogen mustard. Exp Mol Pathol 2020; 114:104410. [PMID: 32113906 DOI: 10.1016/j.yexmp.2020.104410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/13/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nitrogen mustard (NM) is a highly reactive bifunctional alkylating agent that induces inflammation, edema and blistering in skin. An important mechanism mediating the action of NM and related mustards is oxidative stress. In these studies a modified murine patch-test model was used to analyze DNA damage and the antioxidant/stress response following NM exposure in isolated epidermis. NM (20 μmol) was applied to glass microfiber filters affixed to a shaved dorsal region of skin of CD-1 mice. NM caused structural damage to the stratum corneum as reflected by increases in transepidermal water loss and skin hydration. This was coordinate with edema, mast cell degranulation and epidermal hyperplasia. Within 3 h of NM exposure, a 4-fold increase in phosphorylated histone H2AX, a marker of DNA double-stranded breaks, and a 25-fold increase in phosphorylated p53, a DNA damage marker, were observed in the epidermis. This was associated with a 40% increase in 8-oxo-2'-deoxyguanosine modified DNA in the epidermis and a 4-fold increase in 4-hydroxynonenal modified epidermal proteins. At 12 h post NM, there was a 3-75 fold increase in epidermal expression of antioxidant/stress proteins including heme oxygenase-1, thioredoxin reductase, superoxide dismutase, glutathione reductase, heat shock protein 27 and cyclooxygenase 2. These data indicate that NM induces early oxidative epidermal injury in mouse skin leading to an antioxidant/stress response. Agents that enhance this response may be useful in mitigating mustard-induced skin injury.
Collapse
Affiliation(s)
- Gabriella Wahler
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States.
| |
Collapse
|
8
|
NAD + in sulfur mustard toxicity. Toxicol Lett 2020; 324:95-103. [PMID: 32017979 DOI: 10.1016/j.toxlet.2020.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) is a toxicant and chemical warfare agent with strong vesicant properties. The mechanisms behind SM-induced toxicity are not fully understood and no antidote or effective therapy against SM exists. Both, the risk of SM release in asymmetric conflicts or terrorist attacks and the usage of SM-derived nitrogen mustards as cancer chemotherapeutics, render the mechanisms of mustard-induced toxicity a highly relevant research subject. Herein, we review a central role of the abundant cellular molecule nicotinamide adenine dinucleotide (NAD+) in molecular mechanisms underlying SM toxicity. We also discuss the potential beneficial effects of NAD+ precursors in counteracting SM-induced damage.
Collapse
|
9
|
Yuan L, Bai D, Meng L, Wang H, Sun Z, An T, Chen Z, Deng X, Zhang X. Effects of intragastric administration of La 2O 3 nanoparticles on mouse testes. J Toxicol Sci 2020; 45:411-422. [DOI: 10.2131/jts.45.411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Lu Yuan
- College of Public Health, North China University of Science and Technology, China
| | - Disi Bai
- College of psychology, North China University of Science and Technology, China
| | - Lijun Meng
- Department of Environmental and Chemical Engineering, Tangshan University, China
| | - Hong Wang
- College of psychology, North China University of Science and Technology, China
| | - Zhaoyu Sun
- College of psychology, North China University of Science and Technology, China
| | - Tianyang An
- College of Ji Tang, North China University of Science and Technology, China
| | - Zhenfei Chen
- Environmental Monitoring Center of Tang Shan, China
| | - Xuenan Deng
- Department of Social science, Tangshan Normal University, China
| | - Xiujun Zhang
- College of Public Health, North China University of Science and Technology, China
| |
Collapse
|
10
|
Su XD, Jang HJ, Li HX, Kim YH, Yang SY. Identification of potential inflammatory inhibitors from Aster tataricus. Bioorg Chem 2019; 92:103208. [PMID: 31473471 DOI: 10.1016/j.bioorg.2019.103208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
Aster tataricus L.f. is a traditional Eastern Asian herbal medicine used for the relief of cough-related illnesses. In this study, 32 known compounds and two novel monoterpene glycosides were isolated from the roots of A. tataricus. With the aid of reported data, elucidation of the root-extract components was carried out using a multitude of spectroscopic techniques. All isolates were investigated for their ability to inhibit nitric oxide (NO) secretion in lipopolysaccharide-activated RAW264.7 cells. Compound 7 remarkably suppressed NO production with an IC50 value of 8.5 µM. In addition, compound 7 exhibited significant inhibitory activity against the production of inflammatory cytokines (prostaglandin E2, interleukin-6, and interleukin-1 beta) and the expression of inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) via inhibition of nuclear factor-kappa B activation. Moreover, compound 7 effectively prevented the downstream activation of the mitogen-activated protein kinase signaling pathway by inhibiting phosphorylation of c-Jun N-terminal kinases, extracellular signal-regulated kinases, and p38. These results outline compound 7 as a potential inhibitor for the broad treatment of inflammatory diseases, such as atopic dermatitis, asthma, and various allergies.
Collapse
Affiliation(s)
- Xiang Dong Su
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Cheongju, Chungbuk 28116, Republic of Korea
| | - Hong Xu Li
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
11
|
Zhang B, Li S, Men J, Peng C, Shao H, Zhang Z. Long-term exposure to crotonaldehyde causes heart and kidney dysfunction through induction of inflammatory and oxidative damage in male Wistar rats. Toxicol Mech Methods 2019; 29:263-275. [DOI: 10.1080/15376516.2018.1542474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Biao Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| | - Shuangshuang Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| | - Jinlong Men
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| | - Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology – Entox, Brisbane, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Adelaide, Australia
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| | - Zhihu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| |
Collapse
|
12
|
Zhang K, Guo L, Wei Q, Song Q, Liu J, Niu J, Zhang L, Ruan Y, Luo B. COPD rat model is more susceptible to cold stress and PM 2.5 exposure and the underlying mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:26-34. [PMID: 29793105 DOI: 10.1016/j.envpol.2018.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 05/25/2023]
Abstract
The purpose of this study is to verify the hypothesis that chronic obstructive pulmonary disease (COPD) model rat is more susceptible to cold stress and fine particulate matter (PM2.5) exposure than the healthy rat, and explore the related mechanism. COPD rat model, established with cigarette smoke and lipopolysaccharide intratracheal instillation, were exposed to cold stress (0 °C) and PM2.5 (0, 3.2, 12.8 mg/ml). After that, the levels of superoxide dismutase, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1) and angiotensin Ⅱ (Ang-Ⅱ) in lung were measured, as well as the expression levels of lung 8-hydroxy-2-deoxyguanosine (8-OHdG), nuclear factor kappa B (NF-κB), heme-oxygenase-1 (HO-1) and nuclear factor erythroid-2-related factor 2 (Nrf2). There were significant positive relationships between PM2.5 and lung level of iNOS, TNF-α, MCP-1 and Ang-Ⅱ, lung function and pathologic damage in COPD rats. The HO-1, NF-κB and 8-OHdG were found highly expressed in COPD rat lung, particularly at the higher PM2.5 dose of cold stress groups, while Nrf2 was found declined. Thus, COPD rats may be more susceptible to cold stress and PM2.5 exposure. Cold stress may aggravate PM2.5-induced toxic effects in the lung of COPD rats through increasing Ang-Ⅱ/NF-κB signaling pathway and suppressing Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Lei Guo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qiaozhen Wei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Quanquan Song
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Li Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ye Ruan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
13
|
Lüling R, John H, Gudermann T, Thiermann H, Mückter H, Popp T, Steinritz D. Transient Receptor Potential Channel A1 (TRPA1) Regulates Sulfur Mustard-Induced Expression of Heat Shock 70 kDa Protein 6 ( HSPA6) In Vitro. Cells 2018; 7:cells7090126. [PMID: 30200301 PMCID: PMC6162519 DOI: 10.3390/cells7090126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
The chemosensory transient receptor potential ankyrin 1 (TRPA1) ion channel perceives different sensory stimuli. It also interacts with reactive exogenous compounds including the chemical warfare agent sulfur mustard (SM). Activation of TRPA1 by SM results in elevation of intracellular calcium levels but the cellular consequences are not understood so far. In the present study we analyzed SM-induced and TRPA1-mediated effects in human TRPA1-overexpressing HEK cells (HEKA1) and human lung epithelial cells (A549) that endogenously exhibit TRPA1. The specific TRPA1 inhibitor AP18 was used to distinguish between SM-induced and TRPA1-mediated or TRPA1-independent effects. Cells were exposed to 600 µM SM and proteome changes were investigated 24 h afterwards by 2D gel electrophoresis. Protein spots with differential staining levels were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano liquid chromatography electrospray ionization tandem mass spectrometry. Results were verified by RT-qPCR experiments in both HEKA1 or A549 cells. Heat shock 70 kDa protein 6 (HSPA6) was identified as an SM-induced and TRPA1-mediated protein. AP18 pre-treatment diminished the up-regulation. RT-qPCR measurements verified these results and further revealed a time-dependent regulation. Our results demonstrate that SM-mediated activation of TRPA1 influences the protein expression and confirm the important role of TRPA1 ion channels in the molecular toxicology of SM.
Collapse
Affiliation(s)
- Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| |
Collapse
|
14
|
Liu J, Guo L, Zhang K, Song Q, Wei Q, Bian Q, Liang T, Niu J, Luo B. The probable roles of valsartan in alleviating chronic obstructive pulmonary disease following co-exposure to cold stress and fine particulate matter. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:230-236. [PMID: 29775776 DOI: 10.1016/j.etap.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Angiotensin II (ANG II) might play an important role in the co-effects of cold stress and fine particulate matter (PM2.5) on chronic obstructive pulmonary disease (COPD). The purpose of this study is to evaluate the roles of valsartan in alleviating COPD following co-exposure to cold stress and PM2.5. Both the two intervention factors are carried out upon COPD rats with the intervention of valsartan. Blockade of angiotensin receptor by valsartan decreases the levels of malondialdehyde in the normal temperature and tumor necrosis factor-α under cold stress significantly. When treated with valsartan and PM2.5 simultaneously, the expression of 8-hydroxy-2-deoxyguanosine, nuclear factor kappa B and heme oxygenase-1 decrease significantly in the group of cold stress. In conclusion, these results indicate that valsartan might relieve the co-effects of cold stress and PM2.5 on COPD rat lung to some degree.
Collapse
Affiliation(s)
- Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Lei Guo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Quanquan Song
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qiaozhen Wei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qin Bian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Tingting Liang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
15
|
Beigi Harchegani A, Tahmasbpour E, Borna H, Imamy A, Ghanei M, Shahriary A. Free Radical Production and Oxidative Stress in Lung Tissue of Patients Exposed to Sulfur Mustard: An Overview of Cellular and Molecular Mechanisms. Chem Res Toxicol 2018; 31:211-222. [PMID: 29569912 DOI: 10.1021/acs.chemrestox.7b00315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sulfur mustard (SM) is a chemical alkylating compound that primary targets lung tissue. It causes a wide variety of pathological effects in respiratory system such as chronic bronchitis, bronchiolitis obliterans, necrosis of the mucosa and inflammation, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. However, molecular and cellular mechanisms for these pathologies are still unclear. Oxidative stress (OS) induced by reactive oxygen species (ROS) is likely a significant mechanism by which SM leads to cell death and tissues injury. SM can trigger various molecular and cellular pathways that are linked to ROS generation, OS, and inflammation. Hypoxia-induced oxidative stress, reduced activity of enzymatic antioxidants, depletion of intercellular glutathione (GSH), decreased productivity of GSH-dependent antioxidants, mitochondrial dysfunction, accumulation of leukocytes and proinflammatory cytokines, and increased expression of ROS producing-related enzymes and inflammatory mediators are the major events in which SM leads to massive production of ROS and OS in pulmonary system. Therefore, understanding of these molecules and signaling pathways gives us valuable information about toxicological effects of SM on injured tissues and the way for developing a suitable clinical treatment. In this review, we aim to discuss the possible mechanisms by which SM induces excessive production of ROS, OS, and antioxidants depletion in lung tissue of exposed patients.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine & Biomedical Innovations , Pasteur Institute of Iran , Tehran , Iran
| | - Hojat Borna
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| | - Ali Imamy
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center , System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , 19945-581 Tehran , Iran
| |
Collapse
|