1
|
Mendes EJ, Mazon SC, Marsaro IB, Hermes ME, Sachett A, Bertoncello KT, de Moura FR, da Silva Júnior FMR, Müller LG, Lima-Rezende CA, Siebel AM. Investigation on the mancozeb toxicity in adult zebrafish ( Danio rerio). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:616-629. [PMID: 38721962 DOI: 10.1080/15287394.2024.2352787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Agriculture has gained increasing importance in response to the continuous growth of the world population and constant need for food. To avoid production losses, farmers commonly use pesticides. Mancozeb is a fungicide used in agriculture as this compound is effective in combating fungi that harm crops. However, this fungicide may also produce damage to non-target organisms present in soil and water. Therefore, this study aimed to investigate the influence of exposure to mancozeb on survival rate, locomotor activity, behavior, and oxidative status utilizing adult zebrafish (Danio rerio) as a model following exposure to environmentally relevant concentrations of this pesticide. The experimental groups were negative control, positive control, and mancozeb (0.3; 1.02; 3.47; 11.8 or 40 μg/L). Zebrafish were exposed to the respective treatments for 96 hr. Exposure to mancozeb did not markedly alter survival rate and oxidative status of Danio rerio. At a concentration of 11.8 μg/L, the fungicide initiated changes in locomotor pattern of the animals. The results obtained suggest that the presence of mancozeb in the environment might produce locomotor alterations in adult zebrafish, which subsequently disrupt the animals' innate defense mechanisms. In nature, this effect attributed to mancozeb on non-target organisms might result in adverse population impacts and ecological imbalance.
Collapse
Affiliation(s)
- Ellen Jaqueline Mendes
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Samara Cristina Mazon
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | | | - Maria Eduarda Hermes
- Curso de Farmácia, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Adrieli Sachett
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kanandra Taisa Bertoncello
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Fernando Rafael de Moura
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Liz Girardi Müller
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Curso de Farmácia, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Cássia Alves Lima-Rezende
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
2
|
Zheng R, Romero-Del Rey R, Ruiz-Moreno F, Garcia-Gonzalez J, Requena-Mullor M, Navarro-Mena AÁ, López-Villén A, Alarcon-Rodriguez R. Depressive symptoms and suicide attempts among farmers exposed to pesticides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104461. [PMID: 38723701 DOI: 10.1016/j.etap.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
Pesticides safeguard crop health but may diminish cholinesterase activity in farmers, potentially leading to psychiatric disorders like depression and suicide attempts. This study, with 453 participants (225 pesticide-exposed farmers, 228 non-farmers) in Almería, Spain, aimed to investigate the presence of depressive symptoms and suicide attempts, the decrease acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity, and their relationship with pesticide exposure in farmers. Depressive symptoms were evaluated using the Spanish adaptation of the Beck Depression Inventory, and blood samples were analyzed for AChE and BChE activity. Farmers showed significantly increased risk of moderate/severe depression and suicide attempts compared to non-farmers (OR = 2.18; p = 0.001), with highest risks observed among mancozeb users (OR = 2.76; p = 0.001 for depression) and malathion users (OR = 3.50; p = 0.001 for suicide attempts). Findings emphasize elevated depression and suicide risks among pesticide-exposed farmers, particularly associated with chlorpyrifos, mancozeb, and malathion exposure.
Collapse
Affiliation(s)
- Ruirui Zheng
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería 04120, Spain
| | - Raúl Romero-Del Rey
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería 04120, Spain.
| | | | - Jessica Garcia-Gonzalez
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería 04120, Spain
| | - Mar Requena-Mullor
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería 04120, Spain
| | | | | | - Raquel Alarcon-Rodriguez
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería 04120, Spain
| |
Collapse
|
3
|
Quds R, Iqbal Z, Arif A, Mahmood R. Mancozeb-induced cytotoxicity in human erythrocytes: enhanced generation of reactive species, hemoglobin oxidation, diminished antioxidant power, membrane damage and morphological changes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105453. [PMID: 37248021 DOI: 10.1016/j.pestbp.2023.105453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Mancozeb is an ethylene bis-dithiocarbamate fungicide extensively used in agriculture to safeguard crops from various fungal diseases. The general population is exposed to mancozeb through consumption of contaminated food or water. Here, we have investigated the effect of mancozeb on isolated human erythrocytes under in vitro conditions. Erythrocytes were treated with different concentrations of mancozeb (0, 5, 10, 25, 50, 100 μM) and incubated for 24 h at 37 °C. Analysis of biochemical parameters and cell morphology showed dose-dependent toxicity of mancozeb in human erythrocytes. Mancozeb treatment caused hemoglobin oxidation and heme degradation. Protein and lipid oxidation were enhanced, while a significant decrease was seen in reduced glutathione and total sulfhydryl content. A significant increase in the generation of reactive oxygen and nitrogen species was detected in mancozeb-treated erythrocytes. The antioxidant capacity and the activity of key antioxidant enzymes were greatly diminished, while crucial metabolic pathways were inhibited in erythrocytes. Damage to the erythrocyte membrane on mancozeb treatment was apparent from increased cell lysis and osmotic fragility, along with the impairment of the plasma membrane redox system. Mancozeb also caused morphological alterations and transformed the normal discoid-shaped erythrocytes into echinocytes and stomatocytes. Thus, mancozeb induces oxidative stress in human erythrocytes, impairs the antioxidant defense system, oxidizes cellular components, that will adversely affect erythrocyte structure and function.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
4
|
Neuroprotective Effect of Vitamin D on Behavioral and Oxidative Parameters of Male and Female Adult Wistar Rats Exposed to Mancozeb (manganese/zinc ethylene bis-dithiocarbamate). Mol Neurobiol 2023; 60:3724-3740. [PMID: 36940076 DOI: 10.1007/s12035-023-03298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
The constant exposure of rural workers to pesticides is a serious public health problem. Mancozeb (MZ) is a pesticide linked to hormonal, behavioral, genetic, and neurodegenerative effects, mainly related to oxidative stress. Vitamin D is a promising molecule that acts as a protector against brain aging. This study aimed to evaluate the neuroprotective role of vitamin D in adult male and female Wistar rats exposed to MZ. Animals received 40 mg/kg of MZ i.p. and 12.5 μg/kg or 25 μg/kg vitamin D by gavage, twice a week, for 6 weeks. The concentration of manganese had a significant increase in the hippocampus of both sexes and in the striatum of females, unlike zinc, which did not show a significant increase. MZ poisoning led to mitochondrial changes in brain tissues and promoted anxiogenic effects, especially in females. Alterations in antioxidant enzymes, mainly in the catalase activity were observed in intoxicated rats. Taken together, our results showed that exposure to MZ leads to the accumulation of manganese in brain tissues, and the behavior and metabolic/oxidative impairment were different between the sexes. Furthermore, the administration of Vitamin D was effective in preventing the damage caused by the pesticide.
Collapse
|
5
|
Fucic A, Mantovani A, Vena J, Bloom MS, Sincic N, Vazquez M, Aguado-Sierra J. Impact of endocrine disruptors from mother's diet on immuno-hormonal orchestration of brain development and introduction of the virtual human twin tool. Reprod Toxicol 2023; 117:108357. [PMID: 36863570 DOI: 10.1016/j.reprotox.2023.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Diet has long been known to modify physiology during development and adulthood. However, due to a growing number of manufactured contaminants and additives over the last few decades, diet has increasingly become a source of exposure to chemicals that has been associated with adverse health risks. Sources of food contaminants include the environment, crops treated with agrochemicals, inappropriate storage (e.g., mycotoxins) and migration of xenobiotics from food packaging and food production equipment. Hence, consumers are exposed to a mixture of xenobiotics, some of which are endocrine disruptors (EDs). The complex interactions between immune function and brain development and their orchestration by steroid hormones are insufficiently understood in human populations, and little is known about the impact on immune-brain interactions by transplacental fetal exposure to EDs via maternal diet. To help to identify the key data gaps, this paper aims to present (a) how transplacental EDs modify immune system and brain development, and (b) how these mechanisms may correlate with diseases such as autism and disturbances of lateral brain development. Attention is given to disturbances of the subplate, a transient structure of crucial significance in brain development. Additionally, we describe cutting edge approaches to investigate the developmental neurotoxicity of EDs, such as the application of artificial intelligence and comprehensive modelling. In the future, highly complex investigations will be performed using virtual brain models constructed using sophisticated multi-physics/multi-scale modelling strategies based on patient and synthetic data, which will enable a greater understanding of healthy or disturbed brain development.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska C 2, Zagreb, Croatia.
| | - A Mantovani
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - J Vena
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M S Bloom
- Global and Community Health, George Mason University, 4400 University Dr., Fairfax, VA, USA
| | - N Sincic
- Medical School, University of Zagreb, Salata 3, Croatia
| | - M Vazquez
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - J Aguado-Sierra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| |
Collapse
|
6
|
Dehghani A, Pourjafari F, Koohkan F, Haghpanh T, Pourjafari F, Sheibani V, Afarinesh MR. L-carnitine attenuates acoustic startle reflex dysfunction in adult male rats exposed to mancozeb. Toxicol Ind Health 2023; 39:115-126. [PMID: 36650049 DOI: 10.1177/07482337231151739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The fungicide mancozeb increases oxygen-free radicals in the central nervous system. As an antioxidant, L-carnitine protects DNA and cell membranes from damage caused by oxygen-free radicals. The present study investigated how L-carnitine affected the acoustic startle response (ASR) in rats exposed to mancozeb. In this experimental study, male Wistar rats were gavaged orally with mancozeb (500, 1000, and 2000 mg/kg), L-carnitine (100, 200, and 400 mg/kg), or L-carnitine (200 mg/kg) + mancozeb (500 mg/kg) three times in 1 week. In the sham group, saline (0.9%, 10 mL/kg) was gavaged at a volume equivalent to that of the drugs. The control group did not receive any treatment. The results showed that locomotor activity and the percentage of prepulse inhibition in the mancozeb groups decreased compared to the sham group while these parameters increased in the L-carnitine group (200 mg/kg) compared to sham rats. In conclusion, mancozeb may increase the risk factor for cognitive diseases such as schizophrenia in people exposed to it while pretreatment with L-carnitine can attenuate the toxic effect.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, 48503Tarbiat Modares University, Tehran, Iran
| | - Farimah Pourjafari
- Department of Biology, Faculty of Science, 196469University of Bojnord, Bojnord, Iran
| | - Faeze Koohkan
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanh
- Anatomical Sciences Department, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Pourjafari
- Anatomical Sciences Department, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Aprioku JS, Amamina AM, Nnabuenyi PA. Mancozeb-induced hepatotoxicity: protective role of curcumin in rat animal model. Toxicol Res (Camb) 2023; 12:107-116. [PMID: 36866214 PMCID: PMC9972844 DOI: 10.1093/toxres/tfac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
Background Mancozeb-a widely used fungicide in the agricultural sector-is believed to cause toxicity by increasing oxidative stress. This work investigated the efficacy of curcumin in protecting mancozeb-induced hepatotoxicity. Materials and Methods Mature Wistar rats were assigned into 4 equal groups: control, mancozeb (30 mg/kg/day, ip), curcumin (100 mg/kg/day, po), and mancozeb+curcumin. The experiment lasted for 10 days. Results Our results reported that mancozeb elevated aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, gamma glutamyltranspeptidase enzyme activities, and total bilirubin level in plasma; and decreased total protein and albumin levels, compared with the control group (P < 0.05-0.001). Hepatic tissue levels of malondialdehyde, and advanced oxidation protein products were significantly increased; whereas activities of superoxide dismutase, catalase, glutathione peroxidase, as well as levels of reduced glutathione, vitamin C, and total protein were reduced (P < 0.05-0.001). Histopathological examination showed marked histological changes. Co-treatment with curcumin improved the antioxidant activity; reversed oxidative stress and biochemical changes; and restored most of the liver histo-morphological alterations; thus, attenuating the hepatic toxicities induced by mancozeb. Conclusion These results indicated that curcumin could protect against detrimental hepatic effects induced by mancozeb.
Collapse
Affiliation(s)
- Jonah Sydney Aprioku
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, East-West Road, Choba, Rivers State, PMB 5323, Nigeria
| | - Ayanabia Monica Amamina
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, East-West Road, Choba, Rivers State, PMB 5323, Nigeria
| | - Perpetua Amarachi Nnabuenyi
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, East-West Road, Choba, Rivers State, PMB 5323, Nigeria
| |
Collapse
|
8
|
Veiga-Del-Baño JM, Martínez-López S, Pérez-Lucas G, Cuenca-Martínez JJ, Andreo-Martínez P. Trends in dithiocarbamates food research: A bibliometric vision. CHEMOSPHERE 2023; 313:137342. [PMID: 36435325 DOI: 10.1016/j.chemosphere.2022.137342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Dithiocarbamate Fungicides (DTFs) are widely analyzed and studied mainly due to the fact that they play an important role in the cultivation of fruits and vegetables. This manuscript aims to display the results of a bibliometric analysis based on the Web of Science© database, performed in the DTF and food research area. A total of 374 publications were examined. The most scientific production was concentrated between 2012 and 2021, showing a decrease of 32% over the last two years. The Journal of Agricultural and Food Chemistry, India, and Sardar Vallabhbhai National Institute of Technology were the most productive journal, country, and institution, respectively. Reference Publication Year Spectroscopy index showed a decrease of 95% in the last last years studied. Finally, current and future trends should focus on keywords such as individual DTF (Mancozeb, Thiram and Maneb), metabolites (Ethylenethiourea, Propilenthiourea) and a change in the analysis methodology: HPLC versus traditional GC.
Collapse
Affiliation(s)
- José Manuel Veiga-Del-Baño
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - Salvadora Martínez-López
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - Gabriel Pérez-Lucas
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - Juan José Cuenca-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
9
|
Bao J, Zhang Y, Wen R, Zhang L, Wang X. Low level of mancozeb exposure affects ovary in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113670. [PMID: 35617905 DOI: 10.1016/j.ecoenv.2022.113670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Mancozeb (MCZ) is widely used as a protective fungicide. This study aimed to explore the effects of low level MCZ exposure on ovary in mice. Twenty Kunming mice were randomly divided into control and MCZ groups (10 mice each). The mice in the MCZ group were given 100 mg/kg MCZ daily via gavage. The mice were sacrificed to collect serum and ovaries on day 31. The experimental indicators were then assessed. The weight of MCZ-exposed mice significantly reduced while ovarian index significantly increased compared with the control group. The FSH, LH, E2, P, CAT, SOD and MDA contents in the serum were significantly decreased and the content of estradiol significantly increased after MCZ exposure. Histological observation showed that the ovarian structure of mice exposed to MCZ was damaged, and the apoptosis was increased. Immunohistochemistry and RT-qPCR showed that the expression of Bax, caspase-3 and caspase-9 significantly increased in the MCZ- group. Conversely, Bcl-2 expression significantly decreased. Transcriptome sequencing showed that the expression of NADH dehydrogenase ND3, ND4L, ND6 subunits, Cyt b, and SDHC genes in mitochondria were down-regulated after MCZ exposure, similar to real-time PCR analysis. These results collectively indicate that the MCZ can affect the abnormal function of mitochondrial respiratory chain, lead to oxidative phosphorylation decoupling, produce oxidative stress, and finally cause ovarian injury and apoptosis in mice.
Collapse
Affiliation(s)
- Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ran Wen
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|