1
|
Gao S, Hou D, Wang X, Yu J, Dong J, Li T, Sun C. Detoxification effect of sodium thiosulfate on cadmium poisoning in Litopenaeus vannamei and the mechanisms of intestinal flora regulation. MARINE POLLUTION BULLETIN 2024; 209:117053. [PMID: 39396450 DOI: 10.1016/j.marpolbul.2024.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Cadmium (Cd) is currently one of the heavy metals with the highest environmental toxicity impact. Sodium thiosulfate (Na2S2O3) is a commonly used heavy metal detoxification drug in clinical practice, however, it has not been used for Cd detoxification of Litopenaeus vannamei. The present study used exposure of L. vannamei to 150 μg/L of Cd while mitigating in the addition of 75 μg/L of Na2S2O3 for 28 days. The goal was to study the detoxifying effect of Na2S2O3 on L. vannamei poisoning and its role in intestinal flora. The results showed that the growth of Cd group was inhibited, and the growth rate and weight gain of Cd + ST group were greater than that of Cd group. The function and structure of L. vannamei intestinal microorganisms were significantly changed under Cd stress. This work reveals that Na2S2O3 can mitigate the damage caused by this concentration to L. vannamei to a certain extent.
Collapse
Affiliation(s)
- Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Ting Li
- Hainan zhongzheng aquatic science and technology Co., LTD, China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.
| |
Collapse
|
2
|
Bultelle F, Le Saux A, David E, Tanguy A, Devin S, Olivier S, Poret A, Chan P, Louis F, Delahaut L, Pain-Devin S, Péden R, Vaudry D, Le Foll F, Rocher B. Cadmium Highlights Common and Specific Responses of Two Freshwater Sentinel Species, Dreissena polymorpha and Dreissena rostriformis bugensis. Proteomes 2024; 12:10. [PMID: 38651369 PMCID: PMC11036304 DOI: 10.3390/proteomes12020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel's use in environmental survey. To better characterise QM response to stress compared with ZM, both species were exposed to cadmium (100 µg·L-1), a classic pollutant, for 7 days under controlled conditions. The gill proteomes were analysed using two-dimensional electrophoresis coupled with mass spectrometry. For ZM, 81 out of 88 proteoforms of variable abundance were identified using mass spectrometry, and for QM, 105 out of 134. Interestingly, the proteomic response amplitude varied drastically, with 5.6% of proteoforms of variable abundance (DAPs) in ZM versus 9.4% in QM. QM also exhibited greater cadmium accumulation. Only 12 common DAPs were observed. Several short proteoforms were detected, suggesting proteolysis. Functional analysis is consistent with the pleiotropic effects of the toxic metal ion cadmium, with alterations in sulphur and glutathione metabolisms, cellular calcium signalling, cytoskeletal dynamics, energy production, chaperone activation, and membrane events with numerous proteins involved in trafficking and endocytosis/exocytosis processes. Beyond common responses, the sister species display distinct reactions, with cellular response to stress being the main category involved in ZM as opposed to calcium and cytoskeleton alterations in QM. Moreover, QM exhibited greater evidence of proteolysis and cell death. Overall, these results suggest that QM has a weaker stress response capacity than ZM.
Collapse
Affiliation(s)
- Florence Bultelle
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Aimie Le Saux
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Elise David
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | - Arnaud Tanguy
- UMR 7144, CNRS, Station Biologique de Roscoff, Sorbonne University, 29680 Roscoff, France;
| | - Simon Devin
- LIEC, CNRS, UFR SCIFA, Lorraine University, 57000 Metz, France; (S.D.)
| | - Stéphanie Olivier
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Agnès Poret
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Philippe Chan
- INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
- PISSARO IRIB, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
| | - Fanny Louis
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
- LIEC, CNRS, UFR SCIFA, Lorraine University, 57000 Metz, France; (S.D.)
| | - Laurence Delahaut
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | | | - Romain Péden
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | - David Vaudry
- INSERM U982 DC2N, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
| | - Frank Le Foll
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Béatrice Rocher
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| |
Collapse
|
3
|
Jiang X, Li T, Hai X, Zheng X, Wang Z, Lyu F. Integrated behavior and transcriptomic analysis provide valuable insights into the response mechanisms of Dastarcus helophoroides Fairmaire to light exposure. Front Physiol 2023; 14:1250836. [PMID: 38107477 PMCID: PMC10722319 DOI: 10.3389/fphys.2023.1250836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Abstract
Light traps have been widely used to monitor and manage pest populations, but natural enemies are also influenced. The Dastarcus helophoroides Fairmaire is an important species of natural enemy for longhorn beetles. However, the molecular mechanism of D. helophoroides in response to light exposure is still scarce. Here, integrated behavioral, comparative transcriptome and weighted gene co-expression network analyses were applied to investigate gene expression profiles in the head of D. helophoroides at different light exposure time. The results showed that the phototactic response rates of adults were 1.67%-22.5% and females and males displayed a negative phototaxis under different light exposure [6.31 × 1018 (photos/m2/s)]; the trapping rates of female and male were influenced significantly by light exposure time, diel rhythm, and light wavelength in the behavioral data. Furthermore, transcriptome data showed that a total of 1,052 significantly differentially expressed genes (DEGs) were identified under different light exposure times relative to dark adaptation. Bioinformatics analyses revealed that the "ECM-receptor interaction," "focal adhesion," "PI3K-Akt signaling," and "lysosome" pathways were significantly downregulated with increasing light exposure time. Furthermore, nine DEGs were identified as hub genes using WGCNA analysis. The results revealed molecular mechanism in negative phototactic behavior response of D. helophoroides under the light exposure with relative high intensity, and provided valuable insights into the underlying molecular response mechanism of nocturnal beetles to light stress.
Collapse
Affiliation(s)
- Xianglan Jiang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Tengfei Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoxia Hai
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiang Zheng
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding, Hebei, China
| | - Zhigang Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Fei Lyu
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
4
|
Liu H, Tian X, Jiang L, Han D, Hu S, Cui Y, Jiang F, Liu Y, Xu Y, Li H. Sources, bioaccumulation, and toxicity mechanisms of cadmium in Chlamys farreri. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131395. [PMID: 37058935 DOI: 10.1016/j.jhazmat.2023.131395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The Potentially toxic elements (PTEs) cadmium (Cd) is one of the most serious stressors polluting the marine environment. Marine bivalves have specific high enrichment capacity for Cd. Previous studies have investigated the tissue distribution changes and toxic effects of Cd in bivalves, but the sources of Cd enrichment, migration regulation during growth, and toxicity mechanisms in bivalves have not been fully explained. Here, we used stable-isotope labeling to investigate the contributions of Cd from different sources to scallop tissues. We sampled the entire growth cycle of Chlamys farreri, which is widely cultured in northern China, from juveniles to adult scallops. We found tissue variability in the bioconcentration-metabolism pattern of Cd in different bound states, with Cd in the aqueous accounting for a significant contribution. The accumulation pattern of Cd in all tissues during growth was more significant in the viscera and gills. Additionally, we combined a multi-omics approach to reveal a network of oxidative stress-induced toxicity mechanisms of Cd in scallops, identifying differentially expressed genes and proteins involved in metal ion binding, oxidative stress, energy metabolism, and apoptosis. Our findings have important implications for both ecotoxicology and aquaculture. They also provide new insights into marine environmental assessment and mariculture development.
Collapse
Affiliation(s)
- Huan Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China; School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiuhui Tian
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Lisheng Jiang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Dianfeng Han
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Shunxin Hu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yanmei Cui
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Fang Jiang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yongchun Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yingjiang Xu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| | - Huanjun Li
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| |
Collapse
|
5
|
Wang Z, Yang L, Zhou F, Li J, Wu X, Zhong X, Lv H, Yi S, Gao Q, Yang Z, Zhao P, Wu Y, Wu C, Zhang L, Wang H, Zhang L. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of crayfish (Procambarus clarkii) to copper stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130820. [PMID: 36860031 DOI: 10.1016/j.jhazmat.2023.130820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
One of the significant limitations of aquaculture worldwide is the prevalence of divalent copper (Cu). Crayfish (Procambarus clarkii) are economically important freshwater species adapted to a variety of environmental stimuli, including heavy metal stresses; however, large-scale transcriptomic data of the hepatopancreas of crayfish in response to Cu stress are still scarce. Here, integrated comparative transcriptome and weighted gene co-expression network analyses were initially applied to investigate gene expression profiles of the hepatopancreas of crayfish subjected to Cu stress for different periods. As a result, 4662 significant differentially expressed genes (DEGs) were identified following Cu stress. Bioinformatics analyses revealed that the "focal adhesion" pathway was one of the most significantly upregulated response pathways following Cu stress, and seven DEGs mapped to this pathway were identified as hub genes. Furthermore, the seven hub genes were examined by quantitative PCR, and each was found to have a substantial increase in transcript abundance, suggesting a critical role of the "focal adhesion" pathway in the response of crayfish to Cu stress. Our transcriptomic data can be a good resource for the functional transcriptomics of crayfish, and these results may provide valuable insights into the molecular response mechanisms underlying crayfish to Cu stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yi Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
6
|
Characterization of Copper/Zinc Superoxide Dismutase Activity on Phascolosoma esculenta (Sipuncula: Phascolosomatidea) and Its Protection from Oxidative Stress Induced by Cadmium. Int J Mol Sci 2022; 23:ijms232012136. [PMID: 36292990 PMCID: PMC9602484 DOI: 10.3390/ijms232012136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Phascolosoma esculenta, an economically important species inhabiting the high tide areas of the intertidal zone, is particularly sensitive to water pollution. Considering its potential as a bioindicator, studies on the ecotoxicology of P. esculenta are imperative. The toxic effects of cadmium (Cd) were analyzed by exposing P. esculenta to different concentrations of Cd (6, 24, 96 mg/L). In this study, the changes in the antioxidative indexes of total superoxide dismutase (T-SOD), glutathione s-transferase (GST), reduced glutathione (GSH), and microscale malondialdehyde (MDA) were recorded. Copper/zinc superoxide dismutase (Cu/Zn SOD) is one of the most important free radical scavenging members. To reveal the antioxidative function of P. esculenta, an important member of the antioxidative system, designated Pe-Cu/Zn SOD, was cloned and analyzed. Phylogenic analysis revealed that Pe-Cu/Zn SOD was located in the invertebrate evolutionary branch of intracellular Cu/Zn SOD (icCu/Zn SOD). The quantitative real-time polymerase chain reaction results showed that Pe-Cu/Zn SOD messenger ribonucleic acid was widely expressed in all tissues examined. The highest expression levels in coelomic fluid after Cd exposure indicated its function in the stress response. Using a prokaryotic expression system, we obtained a Pe-Cu/Zn SOD recombinant protein, which enhanced the heavy metal tolerance of Escherichia coli. In vivo assays also confirmed that the Pe-Cu/Zn SOD recombinant protein had an antioxidative and free radical scavenging ability. A Cd toxicity experiment, in which purified Pe-Cu/Zn SOD protein was injected into the body cavities of P. esculenta, showed that the reactive oxygen species content in the coelomic fluid of the experimental group was significantly lower compared with the control group. These results suggest that Pe-Cu/Zn SOD played a role in Cd detoxification by chelating heavy metal ions and scavenging reactive oxygen free radicals, and that P. esculenta could be used as a bioindicator to evaluate heavy metal pollution.
Collapse
|
7
|
López-Pedrouso M, Lorenzo JM, Varela Z, Fernández JÁ, Franco D. Finding Biomarkers in Antioxidant Molecular Mechanisms for Ensuring Food Safety of Bivalves Threatened by Marine Pollution. Antioxidants (Basel) 2022; 11:antiox11020369. [PMID: 35204251 PMCID: PMC8868406 DOI: 10.3390/antiox11020369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aquaculture production as an important source of protein for our diet is sure to continue in the coming years. However, marine pollution will also likely give rise to serious problems for the food safety of molluscs. Seafood is widely recognized for its high nutritional value in our diet, leading to major health benefits. However, the threat of marine pollution including heavy metals, persistent organic pollutants and other emerging pollutants is of ever-growing importance and seafood safety may not be guaranteed. New approaches for the search of biomarkers would help us to monitor pollutants and move towards a more global point of view; protocols for the aquaculture industry would also be improved. Rapid and accurate detection of food safety problems in bivalves could be carried out easily by protein biomarkers. Hence, proteomic technologies could be considered as a useful tool for the discovery of protein biomarkers as a first step to improve the protocols of seafood safety. It has been demonstrated that marine pollutants are altering the bivalve proteome, affecting many biological processes and molecular functions. The main response mechanism of bivalves in a polluted marine environment is based on the antioxidant defense system against oxidative stress. All these proteomic data provided from the literature suggest that alterations in oxidative stress due to marine pollution are closely linked to robust and confident biomarkers for seafood safety.
Collapse
Affiliation(s)
- María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Zulema Varela
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - J. Ángel Fernández
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - Daniel Franco
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence:
| |
Collapse
|
8
|
Guo H, Chen T, Liang Z, Fan L, Shen Y, Zhou D. iTRAQ and PRM-based comparative proteomic profiling in gills of white shrimp Litopenaeus vannamei under copper stress. CHEMOSPHERE 2021; 263:128270. [PMID: 33297214 DOI: 10.1016/j.chemosphere.2020.128270] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 05/11/2023]
Abstract
Crustaceans are particularly sensitive to heavy metal pollution. Copper (Cu) is one of typical heavy metal pollutants in aquatic ecosystems. However, limited attention has been paid on the proteomic responses of shrimp under Cu stress. White shrimp Litopenaeus vannamei held in 5‰ seawater were exposed to 5 mg L-1 Cu for 3 h, and the regulatory mechanism in the gills was elucidated using iTRAQ-based quantitative proteomics. The results showed that a total of 5034 proteins were identified, 385 differentially expressed proteins (DEPs), including 147 differentially up-regulated proteins (DUPs) and 238 differentially down-regulated proteins (DDPs) were found. Bioinformatics analysis indicated the DEPs responding to Cu stress mainly involved in cytoskeleton, immune response, stress response, protein synthesis, detoxification, ion homeostasis and apoptosis. Furthermore, we still performed PRM analysis on sarcoplasmic calcium binding protein (SCP), serine proteinase inhibitor B3 (SPIB3), C-type lectin 4 (CTL4), cathepsin L (CATHL), JHE-like carboxylesterase 1 (CXE1) and paramyosin (PMY), and biochemical analysis on Cu/Zn-superoxide dismutase (Cu/Zn-SOD) to validate the iTRAQ results, respectively. The present proteome analysis revealed that Cu stress disrupted the ion homeostasis and protein synthesis, and L.vannamei mainly regulates a series of molecular pathways which contained many key proteins involved in the immune process to protect the organism from Cu stress. Our data provides more insight about the underlying mechanisms that related to the stress response of Cu exposure in crustacean.
Collapse
Affiliation(s)
- Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Tianci Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yuchun Shen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China.
| | - Dayan Zhou
- Aquatic Species Introduction and Breeding Center of Guangxi Zhuang Autonomous Region, Nanning, 530031, China.
| |
Collapse
|
9
|
Ecotoxicoproteomic assessment of microplastics and plastic additives in aquatic organisms: A review. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100713. [DOI: 10.1016/j.cbd.2020.100713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/03/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|