1
|
Wang Z, Li W, Hou X. Probing the interaction mechanism of SDBS with AtPrxQ from Arabidopsis thaliana: Insight into the molecular toxicity to plants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124118. [PMID: 38461562 DOI: 10.1016/j.saa.2024.124118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
As the most universally used anionic surfactant, ubiquitous existence and accumulation of sodium dodecyl benzene sulfonate (SDBS) in the environment has inevitably imposed the associated harmful impacts to plants due to producing excessive reactive oxygen species. However, the underlying hazardous mechanism of the SDBS-induced oxidative stress to plants at molecular level has never been reported. Here, the molecular interaction of AtPrxQ with SDBS was explored for the first time. The intrinsic fluorescence of AtPrxQ was quenched based on static quenching, and a single binding site of AtPrxQ towards SDBS and the potential interaction forces driven by hydrophobic interactions were predicted from thermodynamic parameters and molecular docking results. Besides, the interaction pattern of AtPrxQ and SDBS was also confirmed by the bio-layer interferometry with moderate binding affinity. Moreover, the structural changes of AtPrxQ along with the destructions of the protein framework and the hydrophobic enhancement around aromatic amino acids were observed upon binding with SDBS. At last, the toxic effects produced by SDBS on peroxidase activities and Arabidopsis seedlings growth were also characterized. Thus this work may provide insights on the molecular interactions of AtPrxQ with SDBS and assessments on the biological hazards of SDBS to plants even for the agriculture.
Collapse
Affiliation(s)
- Zhong Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wanting Li
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Wang N, Sun J, Ma X, Yang X, Wang X, Zhang Y, Zhou J, Wang J, Ge C. A study of long-term toxicity of multiple mixtures with hormetic effects by the characteristic parameter σ 2(k∙ECx) and stepwise method. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104133. [PMID: 37116630 DOI: 10.1016/j.etap.2023.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
A previous study found that the characteristic parameter σ2(k∙ECx) (the concentration ECx and slope k of the concentrationresponse curve (CRC) at the effect x %) can predict the acute combined toxicity of multiple mixtures with S-shaped CRCs. In this paper, the competence of σ2(k∙ECx) to predict the long-term toxicity of multiple mixtures with J-shaped CRCs was explored using the Aliivibrio fischeri as the test organism. The combined toxicity was evaluated by the independent action (IA) model and the effect ratio (ERx) model. The stepwise method was used to divide J-shaped CRC into ML and MR (SL and SR). The results showed that the σ2(k∙ECx) and ERx of each segment was in good agreement with the exponential function. A new type of mixture was added to the original type A and type B, whose rules of interaction were opposite to those of type B (named opposite B, OB). This paper improves the understanding and analysis of the J-shaped CRCs in environmental risk assessment.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xinyue Yang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd, Dongying 257300, Shandong, China
| |
Collapse
|
3
|
Liu Q, Wu H, Chen J, Guo B, Zhao X, Lin H, Li W, Zhao X, Lv S, Huang C. Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. ENVIRONMENTAL RESEARCH 2022; 214:113777. [PMID: 35780846 DOI: 10.1016/j.envres.2022.113777] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and heavy-metal contamination in freshwater is an increasing concern. Fe, Mn, Pb, Zn, Cr, and Cd are common heavy metals that can easily flow into rivers causing water pollution. Microplastics act as carriers for heavy metals and increase the transport of contaminants in freshwater systems. We investigated the adsorption mechanisms of three kinds of MPs having similar particle sizes, namely polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC), with respect to trace heavy metals of Pb, Cu, Cr, and Cd under different temperature and salinity conditions. The reaction kinetics of the adsorption of different trace heavy metals on different MPs were consistent with both the quasi primary and quasi secondary kinetic models, indicating the complexity of heavy metal adsorption by MPs. The adsorption rate of heavy metal on MPs was mainly controlled by intra-particle diffusion, and the isotherm model indicated that the adsorption of Pb, Cu, Cr, and Cd by MPs occurred in the form of monolayer physical adsorption. Additionally, an increase in temperature and decrease in salinity were favourable to improve the affinity of MPs toward heavy metals (through adsorption). Zeta potential measurements and Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that electrostatic force interaction was the main mechanism of the adsorption process; oxygen-containing functional groups, π-π interaction, and halogen bonds played important roles in the process of adsorption. Furthermore, the growth inhibition and oxidative stress of microalgae Chlorella vulgaris (GY-D27) due to PP, PS, and PVC were analysed; notably, MPs or Pb inhibited the growth of Chlorella vulgaris. However, the reduced toxicity to Chlorella vulgaris, with respect to a mixture of Pb and MPs, was confirmed using superoxide dismutase and catalase enzyme activities. Our results can be applied for the risk assessment of heavy metals and MPs in aquatic environments.
Collapse
Affiliation(s)
- Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Haowen Wu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jiajiao Chen
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Biaohu Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiufang Zhao
- Ecological Science Institute, LingNan Eco & Culture-Tourism Co., Ltd., Dongguan, 523125, China
| | - Hui Lin
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xin Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
4
|
Characteristics of Dissolved Organic Matter and Its Role in Lake Eutrophication at the Early Stage of Algal Blooms—A Case Study of Lake Taihu, China. WATER 2020. [DOI: 10.3390/w12082278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Decaying algal blooms in eutrophic lakes can introduce organic matter into the water and change nutrient concentrations in the water column. The spatial distribution and composition characteristics, sources, and contribution to eutrophication of dissolved organic matter (DOM) in the overlying water of Lake Taihu, a typical eutrophic lake in China, were analyzed by ultraviolet–visible spectra and three-dimensional fluorescence excitation–emission matrix spectra combined with the statistical decomposition technique, parallel factor analysis. The concentration of DOM was represented by dissolved organic carbon (DOC), and DOC in overlying water of Lake Taihu was 2.86–11.83 mg/L. The colored DOM (CDOM) was characterized by an absorption coefficient at 280 nm (a280) and 350 nm (a350), which were 6.63–29.87 and 1.84–10.41 m−1, respectively. These values showed an increasing trend from southeast to northwest, and the high values were concentrated in the northwest and northern lake areas. The parallel factor analysis (PARAFAC) identified two protein-like (C1: tyrosine-like and C2: tryptophan-like) and one humic-like (C3: humic acid and fulvic acid) fluorescence components for fluorescent DOM (FDOM). The most dominant components were protein-like components (C1 + C2), whose fluorescence intensity contributed 87.55% ± 3.39% to the total fluorescence intensity (Ft) of FDOM (3.38 R.U.). The mean value of the fluorescence index (FI) and index of recent autochthonous contribution (BIX) of DOM was 1.77 and 0.92, and DOC, a280 and fluorescence intensities of FDOM components were all significantly and positively correlated with chl. a, indicating that DOM, CDOM, and FDOM were all mainly derived from algal activities and metabolites. The average humification index of the DOM was 0.66, which indicated a low humification degree. The protein-like DOM was correlated with DON and DOP, and might make great contributions to the continuous occurrence of algal blooms.
Collapse
|