1
|
Ali MM, Farhad Z, Wasim M, Raza S, Almutairi MH, Zahra K, Saleem MU, Mehmood K. Evaluation of genotoxic effect via expression of DNA damage responsive gene induced by ivermectin on MDBK cell line. PLoS One 2024; 19:e0296255. [PMID: 38701093 PMCID: PMC11068189 DOI: 10.1371/journal.pone.0296255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 05/05/2024] Open
Abstract
Ivermectin (IVM) is an anti-parasitic drug which is used for treating parasitic infestations. It has been used in humans for treating intestinal strongyloidiasis and onchocerciasis however, currently researchers are investigating its potential for treating coronavirus SARS-CoV-2. Due to its broad-spectrum activities, IVM is being used excessively in animals which has generated an interest for researchers to investigate its toxic effects. Cytotoxic and genotoxic effects have been reported in animals due to excessive usage of IVM. Therefore, this study aims to evaluate the cytotoxic and genotoxic effects of IVM on the Madin-Darby-Bovine-Kidney (MDBK) cell line by examining the expression of a DNA damage-responsive gene (OGG1). Cytotoxicity of IVM was tested using an assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereas the genotoxicity was evaluated using comet assay along with micronucleus assay. Moreover, the gene expression of DNA damage response gene (OGG1) was measured by qRT-PCR, after extraction of RNA from the MDBK cell line using the TRIzol method and its conversion to cDNA by reverse-transcriptase PCR. During the experiment, cell viability percentage was measured at different doses of IVM i.e., 25%, 50%, 75%, along with LC50/2, LC50 and LC50*2. It was observed that the gene expression of OGG1 increased as the concentration of IVM increased. It was concluded that IVM has both cytotoxic and genotoxic effects on the MDBK cell line. Furthermore, it is recommended that studies related to the toxic effects of IVM at molecular level and on other model organisms should be conducted to combat its hazardous effects.
Collapse
Affiliation(s)
- Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zainab Farhad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Wasim
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kainat Zahra
- Henry C. Lee Institute of Forensic Science, University of New Haven, West Haven, CT, United States of America
| | - Muhammad Usman Saleem
- Faculty of Veterinary Sciences, Department of Biosciences, Bahauddin Zakariya University, Bosan Road, Multan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, Department of Clinical Medicine and Surgery, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
2
|
Habibian-Dehkordi S, Farhadian S, Ghasemi M, Evini M. Insight into the binding behavior, structure, and thermal stability properties of β-lactoglobulin/Amoxicillin complex in a neutral environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Orozco-Hernández JM, Gómez Oliván LM, Heredia-García G, Luja-Mondragón M, Islas-Flores H, SanJuan-Reyes N, Galar-Martínez M, García-Medina S, Dublán-García O. Genotoxic and cytotoxic alterations induced by environmentally-relevant concentrations of amoxicillin in blood cells of Cyprinus carpio. CHEMOSPHERE 2019; 236:124323. [PMID: 31319313 DOI: 10.1016/j.chemosphere.2019.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Amoxicillin (AMX) is a pharmaceutical widely employed in human and veterinary medicine worldwide. Its wide production and use has led to this pharmaceutical being released into the environment in concentrations that range from ng L-1 to μg L-1. Previous studies have demonstrated that this antibiotic generates toxic effects, amongst which alterations to embryonic development and oxidative stress in aquatic organisms, is noteworthy. Nonetheless, it is necessary to characterize the risks that this pharmaceutical represents for species of economic interest such as Cyprinus carpio, in a more precise manner. The aim of this work was to demonstrate if AMX, at environmentally-relevant concentrations, is capable of inducing genotoxic/cytotoxic alterations in C. carpio. In order to evaluate genotoxicity, the comet assay and micronucleus test were used; in order to determine cytotoxic effects, caspase-3 activity and the TUNEL assay were carried out. The results showed that the effects of the biomarkers had their maximum at 72 h; considering the DNA damage in the comet assay, 0.039 μg L-1 resulted in a 29% increase compared to control, and 1.67 μg L-1 caused a 40% increase; micronucleus frequency increased by 205% in C1 and by 311% in C2 when compared to control; compared to control, caspase-3 activity increased 262% in C1 and 787% in C2; for the TUNEL assay, DNA fragmentation increased by 86% in C1 and 120% in C2 compared to control. The results showed that environmentally-relevant concentrations, AMX was capable of generating DNA damage and cytotoxic effects in blood cells of the common carp.
Collapse
Affiliation(s)
- José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico.
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| | - Marlenee Luja-Mondragón
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Acuática del Departamento de Farmacia de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Avenida Wilfrido Massieu y Manuel Stampa, Colonia Industrial Vallejo, CDMX, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática del Departamento de Farmacia de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Avenida Wilfrido Massieu y Manuel Stampa, Colonia Industrial Vallejo, CDMX, CP, 07700, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática del Departamento de Farmacia de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Avenida Wilfrido Massieu y Manuel Stampa, Colonia Industrial Vallejo, CDMX, CP, 07700, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|