1
|
Wang T, Zhang L, Yao Z, Jin L, Zhang W, Feng X, Ma W, Lin M. Response of earthworm enzyme activity and gut microbial functional diversity to carbendazim in the manured soil. Front Microbiol 2024; 15:1461880. [PMID: 39411442 PMCID: PMC11473445 DOI: 10.3389/fmicb.2024.1461880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The effect of pesticide pollution on environmental microorganisms in soil has become the focus of widespread concern in society today. The response of earthworm gut and surrounding soil microbial functional diversity and enzyme activity to carbendazim (CBD) was studied in a soil-earthworm ecosystem amended with manure. In the experiment, CBD was added to the manured soil (MS). Meanwhile, the pesticide treatment without manure and the control treatment without pesticides were also set up. The activities of catalase (CAT) and acetylcholinesterase (AChE) were measured to evaluate the toxicity of CBD. The Biolog method was used to assess the functional diversity of the microbial community. In the 2 mg/kg CBD treatment, earthworm AChE activity decreased significantly in the MS after 14 d, which occurred earlier than in the un-manured soil (NS). The changes of earthworm CAT activity in the pesticide treatments showed a trend of initially increasing and then maintaining at a high activity level. However, the CAT activities at 28 d in the manured soils were clearly lower than that at 7 d for both the CBD treatments, while they remained stable in the control treatments. The carbon source utilization, Simpson index, Shannon index, and McIntosh index of soil microorganisms in the MS treatments were significantly higher than those in the NS treatments. The overall activity of earthworm gut microorganisms in the MS treated with 2 mg/kg CBD was higher than that in the control. Also, CBD treatment (2 mg/kg) increased significantly the Simpson index and McIntosh index of earthworm gut microorganisms. The results indicated that the enzyme activities in the manured soils increased before 7 d for the pesticide treatments. Furthermore, exposure to CBD at a high concentration in the MS not only led to the earlier inhibition of earthworm enzyme activity but also significantly improved the overall activity of earthworm gut microorganisms and microbial functional diversity. This study revealed the ecotoxicological effects of earthworms in response to pesticide stress following the use of organic fertilizers under facility environmental conditions, which can provide a theoretical basis for the remediation of pesticide pollution in soil in the future.
Collapse
Affiliation(s)
- Tianyu Wang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Liping Zhang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Zhoulin Yao
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Longfei Jin
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Weiqing Zhang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Xianju Feng
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mei Lin
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| |
Collapse
|
2
|
Zhou H, Jiao X, Li Y. Exploring the Toxicity of Oxytetracycline in Earthworms ( Eisenia fetida) Based on the Integrated Biomarker Response Method. TOXICS 2024; 12:310. [PMID: 38787089 PMCID: PMC11125748 DOI: 10.3390/toxics12050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Antibiotic contamination has become a global environmental issue of widespread concern, among which oxytetracycline contamination is very severe. In this study, earthworm (Eisenia fetida) was exposed to oxytetracycline to study its impact on the soil environment. The total protein (TP), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), glutathione S-transferase (GST), and glutathione peroxidase (GPX) oxidative stress indicators in earthworms were measured, and the integrated biomarker response (IBR) approach was used to evaluate the toxic effect of oxytetracycline on earthworms. A Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and a path analysis model were used to explore the physiological and metabolic processes of earthworms after stress occurs. The results showed that SOD, GPX, and GST play important roles in resisting oxytetracycline stress. In addition, stress injury showed a good dose-effect relationship, and long-term stress from pollutants resulted in the most serious damage to the head tissue of earthworms. These results provide a theoretical basis for understanding the toxic effect of oxytetracycline on soil animals, monitoring the pollution status of oxytetracycline in soil, and conducting ecological security risk assessment.
Collapse
Affiliation(s)
- Haoran Zhou
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, Harbin 150080, China;
| | - Xiaoguang Jiao
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, Harbin 150080, China;
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
3
|
Ning Y, Zhou H, Wang X, Lu J, Yang Y, Zou D, Zhou D. A method to study the effects of combined stress of cadmium and microplastics on the acute toxicity of Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61123-61133. [PMID: 37055689 DOI: 10.1007/s11356-023-26836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The compound pollutants formed by microplastics and cadmium present a significant potential threat to the soil-based ecosystem, and it is urgent to carry out relevant ecotoxicological studies. However, the lack of appropriate test methods and scientific mathematical analysis models has restricted the progress of research. Based on an orthogonal test design, a ternary combined stress test was performed to study the effect of microplastics and cadmium on earthworms. This study used the particle size and concentration of microplastics as well as the concentration of cadmium as test factors. Using the improved factor analysis model and the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, a new model was constructed according to the response surface methodology to analyze the acute toxic effects on earthworms under the combined stress of microplastics and cadmium. In addition, the model was tested in a soil-polluted environment. The results show that the model can perfectly integrate the spatiotemporal cross effects of the concentration and time of the applied stress, and the scientific data analysis process ensures the efficient development of ecotoxicological research in the actual compound pollution environment. Moreover, the results of the filter paper test and soil test showed that the equivalent toxicity ratio of cadmium concentration, microplastic concentration, and microplastic particle size to earthworms as 26:35:39 and 23:36:41, respectively. In terms of the interaction effect, a certain positive interaction was observed between the cadmium concentration and that of the microplastics and their particle size, while a negative interaction was observed between the concentration of microplastics and their particle size. This research provides a test basis and model reference for early monitoring of the health of contaminated soils and assessments of ecological safety and security.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Xu Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiyang Lu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yanna Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Liang X, Zhou D, Wang J, Li Y, Liu Y, Ning Y. Evaluation of the toxicity effects of microplastics and cadmium on earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155747. [PMID: 35533859 DOI: 10.1016/j.scitotenv.2022.155747] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and heavy metal pollution have become research hotspots in recent years. This study focused on the comprehensive evaluation of the toxicity effect on Eisenia fetida under combined exposure to MPs and the heavy metal cadmium (Cd). With Cd concentration, MPs concentration and MPs partical size as stress factors, the TOPSIS model was constructed to explore the toxicity levels of the stress factors. A short-term co-exposure test and a long-term co-exposure test were designed by orthogonal combination tests with equivalent toxicity levels. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GPX), glutathione S transferase (GST), and acetylcholinesterase (AChE) and the contents of protein (TP), glutathione (GSH), and malondialdehyde (MDA) in earthworms were determined. Integrated biological responses version 2 (IBRv2) was used to evaluate the toxicity of MPs and Cd combined exposure on earthworms. The results showed that the toxicity ratio of Cd concentration, MPs concentration and MPs partical size was 46 to 29 to 25. Combined exposure to MPs and Cd enhanced the activities of SOD, POD, CAT, GPX and GST, MDA and GSH contents also increased, while the AChE activities were inhibited. SOD, GPX and GST play important roles in the resistance of earthworms to pollutant stress. During short-term co-exposure, Cd concentration had antagonistic effects with on MPs concentration and MPs partical size, while they showed synergistic effects during long-term co-exposure.
Collapse
Affiliation(s)
- Xiaoyan Liang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiahao Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Ning Y, Li Y, Li X, Shao Z, Fu H, Yuan Y, Zhou D. Evolution of the earthworm (Eisenia fetida) microbial community in vitro and in vivo under tetracycline stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113214. [PMID: 35065502 DOI: 10.1016/j.ecoenv.2022.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Bioremediation of contaminated soil has received increasing attention, and the effects of antibiotic residues on the soil ecological environment are a current research hotspot. Earthworms are the first choice of soil organisms to indicate the degree of soil pollution, and their detoxification mechanism after antibiotic stress must be further explored. Taking Eisenia fetida as the research object, an antibiotic (tetracycline) stress test was carried out in sterile artificial soil. The stress concentrations were set at 0, 0.3, 3, 30, 300 and 600 mg/kg. The ECO method was used to cultivate microbes in earthworms and soil. The carbon source utilization intensity algorithm developed by our team was used for data statistics, and a factor analysis model was constructed to explore the succession process of microbes of earthworms in vivo and in vitro under tetracycline stress. The results showed that there were four processes in the evolution of microbes under short-term tetracycline stress: at 1-3 days, the microbes in worms played a leading role; at 4-5 days, the microbes in the worms and the soil microbes jointly resisted TET stress; after 6-8 days of stress, the microbes in worms still played the main role, but their role was weakened; and after 9-10 days, soil microbes played a leading role, and tolerant microbes appeared. Under long-term stress, the microbes of earthworms in vivo and in vitro were obvious different, and there may be no regulatory relationship. And the factor analysis model is suitable for the analyse of the changes in microbial communities in vivo and in vitro under TET stress. The research results provide a reference method and model basis for the bioremediation of antibiotic-contaminated soil and the study of earthworm detoxification mechanisms, and help agricultural development.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojuan Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Shao
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongtai Fu
- Harbin Meteorological Bureau, Harbin 150030, China
| | | | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Zhou D, Wang S, Liang X, Wang J, Zhu X, Ning Y. The relationship between the oxidative stress reaction and the microbial community by a combinative method of PA and CCA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143042. [PMID: 33127145 DOI: 10.1016/j.scitotenv.2020.143042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Earthworms, as the first choice for soil monitoring and bio-remediation of cadmium (Cd)-contaminated soil, need to identify its mechanism under Cd stress. In this study, an artificial soil test method was used to determine the oxidative stress reaction indices, amino acid composition, and microbial community changes in earthworms under different stress durations and concentrations. For the first time, the canonical correlation analysis model and path analysis model were innovatively introduced into the data analysis to determine the mechanism that drives earthworm physiological functions after Cd stress. The results showed that in the low-stress concentration treatments (50-125 mg.kg-1 DW), there was a driving relationship between oxidative stress reaction and microbial community in earthworm, and the driving factor was glycyl-L-glutamic acid at 50 mg.kg-1 DW. With the increase of Cd stress intensity, the enzymes of oxidative stress promoted the survival microbes to begin to proliferate, and SOD became the main driving factor under 125 mg.kg-1 DW Cd stress. In the high-stress concentration treatments (250-500 mg.kg-1 DW), the driving effects were weakened or disappeared; while Cd-resistant microbial population appeared. This study provides a theoretical basis for the driving mechanism between oxidative stress effect and microbial community after Cd stress.
Collapse
Affiliation(s)
- Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Shiben Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyan Liang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiahao Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Zhu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|