1
|
Zhou QY, Ren C, Li JY, Wang L, Duan Y, Yao RQ, Tian YP, Yao YM. The crosstalk between mitochondrial quality control and metal-dependent cell death. Cell Death Dis 2024; 15:299. [PMID: 38678018 PMCID: PMC11055915 DOI: 10.1038/s41419-024-06691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing-Yan Li
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Ren-Qi Yao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ying-Ping Tian
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Wang A, Sun Y, Sun Z, Liu X, Yu X, Li K, Zhang X, Xu Y, Mu W, Li B. Modification of sedimentation and bioaccumulation behavior as an efficient strategy to modulate the toxicity of pyraclostrobin to zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121164. [PMID: 36720336 DOI: 10.1016/j.envpol.2023.121164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The behavior of pesticide particles or droplets might significantly influence their environmental risks. However, studies on the risk of different pesticide formulations in aqueous environments have rarely been reported. In this study, we prepared three types of pyraclostrobin formulations to evaluate their behavior in the aqueous environment and toxicological risks to zebrafish. The results showed that pyraclostrobin emulsifiable concentrate (EC) sank faster in water with increasing hydrophilicity and density of the solvent. The particles also sank faster with increasing particle size and particle density for suspension concentrate (SC) and microcapsules (MCs). Diverse behavior in water results in different temporal and spatial distributions of the active ingredient. EC-EGDA, SC-5 μm, CS-Large and EC-MO sink or float over time, therefore reducing the effective dose suspended in water. Lower toxicological risks of the pesticides were also observed by reducing the enrichment of pyraclostrobin in zebrafish. In addition to the direct toxicity of the active ingredient, the type of pesticide formulations and their specific compositions might also influence the integrated toxicity. The environmental behavior of pesticide formulations should also be considered for their systematic assessment of environmental risks to ensure the scientific application of pesticides in different scenarios.
Collapse
Affiliation(s)
- Aiping Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yue Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Zhengyi Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiao Liu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xin Yu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Ke Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xianxia Zhang
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yue Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
3
|
Liu Q, Wang H, Ge J, Li L, Luo J, He K, Yan H, Zhang X, Tahir R, Luo W, Chen S, Cheng Z, Zhao L, Yang S. Chronic hypoxia and Cu 2+ exposure induce gill remodeling of largemouth bass through endoplasmic reticulum stress, mitochondrial damage and apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106373. [PMID: 36630844 DOI: 10.1016/j.aquatox.2022.106373] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia and Cu2+ pollution often occur simultaneously in aquatic ecosystems and jointly affect physiology of fish. As the respiratory and ion exchange tissue of fish, how gill responds to the stress induced by these two abiotic environmental factors is still unclear. We have conducted a study by exposing largemouth bass (Micropterus salmoides) to hypoxia (2.0 mg·L-1) and/or Cu2+ (0.5 mg·L-1) for 28 days to answer this question. We subsequently studied respiratory rate, Cu2+ transport, endoplasmic reticulum (ER) stress, mitochondrial damage, and morphology in gill tissue on day 7, 14, 21 and 28. We found that hypoxia exposure increased the respiratory rate of largemouth bass, reflecting the response of largemouth bass to cope with hypoxia. Of note, Cu2+ entered gill by specifically binding to CTR1 and its accumulation dramatically in gill disrupted the response of largemouth bass to hypoxia. Hypoxia and/or Cu2+ exposure led to ER stress and mitochondrial damage in gills of largemouth bass. ER stress and mitochondrial damage induced apoptosis by activating caspase-8 and caspase-9 signaling pathways, respectively. Apoptosis induced by hypoxia and Cu2+ exposure had a positive and synergistic effect on gill remodeling by reducing interlamellar cell masses. In addition, Cu2+ exposure induced hypoxia-like remodeling to gill morphology through mechanisms similar to hypoxia exposure. Most of gene expression changed mainly within 21 days and recovered to the control level on day 28, reflecting the acclimation of largemouth bass to hypoxia and/or Cu2+ exposure at gene expression level. Overall, our research suggests that chronic hypoxia and Cu2+ exposure could induce gill remodeling of largemouth bass through ER stress, mitochondrial damage and apoptosis. The outcomes could provide an insight for fish environmental adaptation and environmental toxicology.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiayu Ge
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lisen Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
4
|
Ma Q, Poopal RK, Zhang J, Chen X, Ren Z. Real-time determination of water status upon simultaneous zebrafish exposure to sublethal concentrations of CuSO 4. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106296. [PMID: 36162203 DOI: 10.1016/j.aquatox.2022.106296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Water pollution from commonly occurring contaminants (metals, xenobiotics, etc.) is a serious global problem. Copper is a commonly occurring water contaminant. A variety of physiological and biological methods have been developed to monitor water quality. The assessment of biological responses is an effective method for identifying the harmful effects of contaminants on ecosystems. Fish is a highly recommended animal model in water quality monitoring. Swimming consistency (firmness) and respiratory metabolism (oxygen consumption rate, carbon dioxide excretion rate and respiratory quotient) are essential for fish to maintain body homeostasis toward coping with environmental stress. We exposed zebrafish to different concentrations (Treatment I-0.1 mg/L and Treatment II-1.58 mg/L) of CuSO4. We have continuously quantified the strength of behavior (swimming consistency) and physiological (respiratory rates) biomarkers for ten days using an online monitoring system of swimming behavior and external respiration. Swimming consistency and respiratory rates of zebrafish (p<0.05) decreased in the CuSO4-treated groups compared to the control group. Avoidance behavior has led to an endpoint behavior at copperiedus. The time-delayed toxic effect has resulted in CuSO4 treatment groups. We checked for swimming consistency aberration on the artificial neural array, Self-organizing map (SOM). Circadian rhythms were influenced by prolonged exposure to CuSO4 toxicity. A concentration- and duration-dependent behavior anomaly was noted in this study. Swimming behavior and respiratory metabolism patterns are sensitive non-invasive stress biomarkers for water quality monitoring studies.
Collapse
Affiliation(s)
- Qinghua Ma
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Jingxuan Zhang
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Xinyu Chen
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
5
|
Feng W, Su S, Song C, Yu F, Zhou J, Li J, Jia R, Xu P, Tang Y. Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab ( Eriocheir sinensis). Antioxidants (Basel) 2022; 11:antiox11102029. [PMID: 36290752 PMCID: PMC9598082 DOI: 10.3390/antiox11102029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and 0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled. The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+. Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-κB pathways.
Collapse
Affiliation(s)
- Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-051085554198
| |
Collapse
|
6
|
The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5418376. [PMID: 36238639 PMCID: PMC9553361 DOI: 10.1155/2022/5418376] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, connective tissue crosslinking, and antioxidant defense. Copper level has been proved to be closely related to the morbidity and mortality of cardiovascular diseases such as atherosclerosis, heart failure, and diabetic cardiomyopathy (DCM). Copper deficiency can induce cardiac hypertrophy and aggravate cardiomyopathy, while copper excess can mediate various types of cell death, such as autophagy, apoptosis, cuproptosis, pyroptosis, and cardiac hypertrophy and fibrosis. Both copper excess and copper deficiency lead to redox imbalance, activate inflammatory response, and aggravate diabetic cardiomyopathy. This defective copper metabolism suggests a specific metabolic pattern of copper in diabetes and a specific role in the pathogenesis and progression of DCM. This review is aimed at providing a timely summary of the effects of defective copper homeostasis on DCM and discussing potential underlying molecular mechanisms.
Collapse
|
7
|
Santos D, Luzio A, Félix L, Bellas J, Monteiro SM. Oxidative stress, apoptosis and serotonergic system changes in zebrafish (Danio rerio) gills after long-term exposure to microplastics and copper. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109363. [PMID: 35525464 DOI: 10.1016/j.cbpc.2022.109363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
Abstract
Fish gills are in direct contact with the surrounding pollutants, and thus, potentially more vulnerable to microplastics (MPs) and heavy metals. The present study aimed to evaluate the long-term exposure effects of MPs and copper (Cu) in the gills of adult zebrafish (Danio rerio). To this end, zebrafish were exposed to MPs (2 mg/L), Cu (Cu25, 25 μg/L) and their mixture (Cu25 + MPs) for 30 days, and then oxidative stress, detoxification, antioxidant, metabolic and neurotoxicity enzymes/genes, as well serotonergic system and apoptosis genes, were evaluated in gills. In the mixture group, ROS levels were increased, while CAT and GPx activities were inhibited, indicating the induction of oxidative stress in zebrafish gills. This was followed by an increase of LPO levels and potential oxidative damage in zebrafish gills. The tryptophan hydroxylase 1a (tph1a) and caspase-3 (casp3) genes were significantly upregulated in Cu25 + MPs group, indicating a potential dysregulation of serotonin synthesis and apoptosis pathways, respectively. Overall, the present study contributes to improving the knowledge about the response of aquatic organisms to MPs and the potential ecological risk that these particles represent to the ecosystems.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| |
Collapse
|