1
|
Rasta M, Khodadoust A, S Taleshi M, S Lashkaryan N, Shi X. Potential use of gammarus (Pontogammarus maeoticus) and shrimp (Palaemon elegans) as biomonitors of microplastics pollution in coastal environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124959. [PMID: 39278554 DOI: 10.1016/j.envpol.2024.124959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Microplastics (MPs) pose a significant threat to marine ecosystems, necessitating robust biomonitoring to assess aquatic risks and inform effective policymaking. In this study we investigated MPs pollution in gammarus (Pontogammarus maeoticus), shrimp (Palaemon elegans), sediment and water samples of southern coast of the Caspian Sea to assess the potential use of these two crustaceans as biomonitors of MPs pollution, bioconcentration of MPs in organisms' tissue and the pollution risks of MPs in environmental matrices. Samples were collected from 6 stations during June to August 2023. MPs were found in all compartments with an average of 100 ± 45.34 items/kg dry weight, 0.45 ± 0.06 items/L, 0.38 ± 0.21 items/individual or 0.58 ± 0.34 items/g wet weight (ww) and 0.26 ± 0.15 items/individual or 8.69 ± 7.88 items/g ww, for sediments, seawaters, P. elegans and P. maeoticus, respectively. MPs were prevailed by class 300-1000 μm in size, polyamide in polymer, fiber in shape and black in color. P. maeoticus and P. elegans did not meet the selection criteria as MPs biomonitors. However, bioconcentration factor (BCF) illustrated that both crustaceans can absorb and accumulate MPs from their surrounding water (BCF >1). Based on contamination factors (CF) values, sampling stations were polluted with MPs (1 ≤ CF < 6). The overall pollution load index (PLI) for sediment and seawater stations were 2.47 and 1.88, respectively, indicating minor contamination with MPs in the risk level I. Current research provides useful information on MPs pollution in crustaceans species and the risk level of MPs in environmental matrices that can be suitable for bioaccumulation hazard assessment and future monitoring programs.
Collapse
Affiliation(s)
- Majid Rasta
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| | - Ali Khodadoust
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran.
| | - Mojtaba S Taleshi
- Department of Marine Chemistry, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Niloofar S Lashkaryan
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| | - Xiaotao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
2
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
3
|
Anandavelu I, Karthik R, Robin RS, Hariharan G, Mugilarasan M, Ramesh R, Purvaja R. Morphometric characteristics and spatiotemporal heterogeneity of microplastics on the north-east coast of India. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136180. [PMID: 39427351 DOI: 10.1016/j.jhazmat.2024.136180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The study analysed microplastics (MPs) in surface waters along the north-east coast of India and focused on the spatiotemporal distribution and morphometric characteristics of 800 particles for environmental insights. The MPs were consistently present in all water masses, with an average abundance of 0.67 ± 0.66 particles/m3 during the monsoon and 0.12 ± 0.08 particles/m3 post-monsoon. Fragments and fibers were dominant in both seasons, comprising over 83 % and 12 %, respectively. In terms of colours, blue was significantly dominant during the post-monsoon (H, χ2 (5) = 15.38, p < 0.01); however, such variation was absent during the monsoon. Spatially, significant variance in abundance (F4, 34 = 8.542; p < 0.01) and across colours and forms during the monsoon was correlated with land-based inputs from the Hooghly River. FTIR analysis revealed ten polymer types, predominantly polyethylene (44 %). SEM observations indicated that 80 % of particles exhibited polymer ageing from oxidative weathering. The size distribution of MPs varied notably, with a higher proportion of < 0.3 mm (16.7 %) during the monsoon, possibly due to increased particle disintegration. The study noted MPs had low to moderate circularity, with increased irregularity during the monsoon due to heavy precipitation and river flushing. An initial risk assessment of MP pollution in surface waters on the north-east coast revealed a low-risk state. Acrylonitrile butadiene styrene (ABS) was identified as the most hazardous MP polymer. A wide range of toxic trace elements were found in MPs in these waters. The findings from the study deepen our knowledge of MPs and their fate in the pelagic zone, which supports the development of science-based policies that effectively reduce MP pollution.
Collapse
Affiliation(s)
- I Anandavelu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India.
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| |
Collapse
|
4
|
Chen L, Zhou S, Su B, Qiu Y, Li Y. Microplastic pollution in Taihu Lake: Spatial distribution from the lake inlet to the lake centre and vertical stratification in the water column. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125102. [PMID: 39395731 DOI: 10.1016/j.envpol.2024.125102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
The aim of this study was to analyse the distribution characteristics of microplastics in lakes, assess their potential impacts on ecosystems, and explore effective management and control strategies. Despite a wealth of research focused on lake water, the variations in microplastics with offshore distance and their vertical distribution within the water column are not well understood. Here, we investigated the freshwater continuum from the inlet of Taihu Lake to the centre, and vertically from the surface to the bottom water. The results revealed that the distribution of microplastics (<5 mm in size) exhibited a clear spatial gradient. The microplastic abundance at the lake entrance was 2.12 times greater than that at the centre, and on the lake surface, the microplastic abundance was 1.36-1.69 times higher than that estimated from the water column. Notably, the proportion of small-sized microplastics (<0.1 mm) in the bottom water was 1.72 times higher than that in the surface water. The main types of polymers identified were polyamide (PA) and polyvinyl chloride (PVC), and their main sources may be from clothes washing and industrial activities. The Monte Carlo simulation results indicated that the overall risk of microplastics in surface water was higher than that in the water column, and the contributions of PVC and polyurethane (PU) to the ecological risk were 90.10% and 9.57%, respectively. Therefore, PVC and PU should be the priority of microplastic pollution control. This study provides the first comprehensive evaluation of the spatial ecological risk of microplastics in Taihu Lake, which improves our understanding of the distribution and environmental risks of microplastics in lake systems.
Collapse
Affiliation(s)
- Long Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| | - Bo Su
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Yan Li
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Chen D, Wang P, Liu S, Wang R, Wu Y, Zhu AX, Deng C. Global patterns of lake microplastic pollution: Insights from regional human development levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176620. [PMID: 39362563 DOI: 10.1016/j.scitotenv.2024.176620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Microplastics have emerged as a pervasive pollutant across various environmental media. Nevertheless, our understanding of their occurrence, sources, and drivers in global lakes still needs to be completed due to limited data. This study compiled data from 117 studies (2016-May 2024) on microplastic contamination in lake surface water and sediment, encompassing surface water samples in 351 lakes and lake sediment samples in 200 lakes across 43 countries. Using meta-analysis and statistical methods, the study reveals significant regional variability in microplastic pollution, with concentrations ranging from 0.09 to 207,500 items/m3 in surface water and from 5.41 to 18,100 items/kg in sediment. Most microplastics were under 1 mm in particle size, accounting for approximately 79 % of lake surface water and 76 % of sediment. Transparent and blue microplastics were the most common, constituting 34 % and 21 % of lake surface water and 28 % and 18 % of sediment, respectively. Fibers were the dominant shape, representing 47 % of lake surface water and 48 % of sediment. The primary identified polymer types were polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). Countries like India, Pakistan, and China had higher contamination levels. Positive correlations were found between microplastic abundance in surface water and factors like human footprint index (r = 0.29, p < 0.01), precipitation (r = 0.21, p < 0.05), and net surface solar radiation (r = 0.43, p < 0.001). In contrast, negative correlations were observed with the human development index (r = -0.61, p < 0.01) and wind speed (r = -0.42, p < 0.001). In sediment, microplastics abundance correlated positively with the human footprint index (r = 0.45, p < 0.001). This study underscores the variability in microplastic pollution in global lakes and the role of human activities and environmental factors, offering a valuable reference for future research.
Collapse
Affiliation(s)
- Dan Chen
- Yunnan Key Laboratory of Plateau Geographical Process and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Wang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Liu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- Yunnan Key Laboratory of Plateau Geographical Process and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China
| | - Yaping Wu
- Yunnan Key Laboratory of Plateau Geographical Process and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China
| | - A-Xing Zhu
- Yunnan Key Laboratory of Plateau Geographical Process and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China; Department of Geography, University of Wisconsin-Madison, Madison, USA
| | - Chunnuan Deng
- Yunnan Key Laboratory of Plateau Geographical Process and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
6
|
Saikia KK, Handique S. Microplastics abundance and potential ecological risk assessment in sediment, water and fish of Deepor Beel-a Ramsar Wetland of the Brahmaputra plain, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:977. [PMID: 39316144 DOI: 10.1007/s10661-024-13138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs) are increasingly recognized as environmental contaminants with complex impacts on fish and other aquatic organisms. This study determined the microplastics abundance and the induced-ecological risks of microplastics in water, sediment, and commonly harvested fishes of a Ramsar site, Deepor Beel of Assam, India. Six samples of water and sediment were collected with nine individuals of two commonly harvested fish species Puntius sophore (Pool Barb) and Gudusia chapra (Indian River Shad). The abundance of microplastics in water and sediments were analyzed through organic matter digestion using hydrogen peroxide (H2O2, 30%) and sodium chloride (NaCl) for density separation. Potassium hydroxide (KOH, 10%) was used for digestion of fish gut. The microplastics were identified visually and chemically characterized through micro-Raman spectroscopy. Total 467 microplastic particles in water and sediment, and 62 particles in fish were identified. An average concentration of 0.55 ± 0.06 particles/L in water, 4.03 ± 0.41 particles/100 g in sediment samples, 3.83 ± 2.26 particles/individual in Puntius sophore, and 6.5 ± 3.40 particles/individual in Gudusia chapra were detected. Fibers accounted to the major shape of microplastic in water (54%) and sediment (50%), whereas fragments (65%) were the major shapes detected in both fishes. The color composition includes blue, black, red, green, brown, yellow, and transparent. Fiber particles size ranged between 150 and 1782 µm, fragments within 85-325 µm, and sphere within 85-220 µm. Chemical characterization of microplastics revealed polymer types including polypropylene (PP = 27%), polyvinyl chloride (PVC = 25%), acrylonitrile-butadiene-styrene (ABS = 18%), polycarbonate (PC = 13%), polyethylene (12%), and polystyrene (PS = 5%). PHI levels were at hazard level III and V for water and sediment samples and at level IV for both fish species. The PLI at hazard level I indicated low pollution levels, whereas the PERI were within danger and extreme danger levels. This study is the first report in abundances of microplastics and the ecological risk assessment of microplastics in surface waters, sediments and fishes of Deepor Beel wetland.
Collapse
Affiliation(s)
- Kundil Kumar Saikia
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Sumi Handique
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
7
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Narwal N, Katyal D. The abundance and analytical characterization of microplastics in the surface water of Haryana, India. Microsc Res Tech 2024. [PMID: 39222395 DOI: 10.1002/jemt.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Microplastic (MP) contamination has become a serious environmental concern that affects terrestrial environments, aquatic ecosystems, and human health. The current study assesses the presence, abundance, and morphology of MPs present in the surface water of Rohtak district, Haryana, India, which is rapidly undergoing industrialization. While the morphological studies of MPs were conducted through stereo microscopy and field emission-scanning electron microscopy (FE-SEM), the elemental composition of polymers was analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results revealed that the surface water was significantly contaminated by polyethylene, polypropylene, and polystyrene. Moreover, the abundance of MPs was found to be 16-28 particles/L with an average value of 23 particles/L. Most of the MPs had fibrous morphology with the specifics being, fibers (43.9%), fragments (23.7%), films (17%), and pellets (15.4%). The MPs exhibited a size range of 0.61-4.87 mm, with an average size measured at 2.03 ± 0.04 mm. Also, the MP pollution load index values for the surface water bodies were found to be below 10, indicating a low risk category. Though currently designated as "low risk," it is important that mitigation strategies be brought over at this juncture to further prevent the deterioration of quality of water. Thus, this study not only intends to bring forth the impact of human activities, industrial waste, open waste dumping, and inadequate municipal waste management practices on increasing MP concentration but also highlights the sustainable alternatives and strategies to address this emerging pollutant in urban water systems. For further prevention, the implementation of stringent regulations and on-site plastic waste segregation is a critical component in preventing the disposal of plastic waste in surface water bodies. RESEARCH HIGHLIGHTS: The abundance of MPs was found to be 16-28 particles/L, with an average value of 23 particles/L. The surface water bodies in Rohtak district fall into the hazard categories of low risk with values less than 10. The overall MP concentration in water, across all five areas, based on color was in order: white/transparent (39.1%), black (15%), gray (9.1%), green (8.7%), blue (7.8%), red (7.8%), orange (6.3%), and yellow (6.1%). The dominant polymers were polyethylene (PE) (42%) and polypropylene (41%) as determined by FTIR spectroscopy.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
9
|
Islam ARMT, Hasan M, Sadia MR, Mubin AN, Ali MM, Senapathi V, Idris AM, Malafaia G. Unveiling microplastics pollution in a subtropical rural recreational lake: A novel insight. ENVIRONMENTAL RESEARCH 2024; 250:118543. [PMID: 38417661 DOI: 10.1016/j.envres.2024.118543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
While global attention has been primarily focused on the occurrence and persistence of microplastics (MP) in urban lakes, relatively little attention has been paid to the problem of MP pollution in rural recreational lakes. This pioneering study aims to shed light on MP size, composition, abundance, spatial distribution, and contributing factors in a rural recreational lake, 'Nikli Lake' in Kishoreganj, Bangladesh. Using density separation, MPs were extracted from 30 water and 30 sediment samples taken from ten different locations in the lake. Subsequent characterization was carried out using a combination of techniques, including a stereomicroscope, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed a significant prevalence of MPs in all samples, with an average amount of 109.667 ± 10.892 pieces/kg3 (dw) in the sediment and 98.167 ± 12.849 pieces/m3 in the water. Small MPs (<0.5 mm), fragments and transparent colored particles formed the majority, accounting for 80.2%, 64.5% and 55.3% in water and 78.9%, 66.4% and 64.3% in sediment, respectively. In line with global trends, polypropylene (PP) (53%) and polyethylene (PE) (43%) emerged as the predominant polymers within the MPs. MP contents in water and sediment showed positive correlations with outflow, while they correlated negatively with inflow and lake depth (p > 0.05). Local activities such as the discharge of domestic sewage, fishing waste and agricultural runoff significantly influence the distribution of polypropylene. Assessment of pollution factor, pollution risk index and pollution load index values at the sampling sites confirmed the presence of MPs, with values above 1. This study is a baseline database that provides a comprehensive understanding of MP pollution in the freshwater ecosystem of Bangladesh, particularly in a rural recreational lake. A crucial next step is to explore ecotoxicological mechanisms, legislative measures and future research challenges triggered by MP pollution.
Collapse
Affiliation(s)
- Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Moriom Rahman Sadia
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
10
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
11
|
Pastorino P, Barceló D. Microplastics and their environmental effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104324. [PMID: 38000685 DOI: 10.1016/j.etap.2023.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Microplastics (MPs) are acknowledged as emerging contaminants that pose a substantial threat to the environment. The adverse impacts of MP pollution extend across marine, freshwater, and terrestrial ecosystems, covering regions from the Tropics to the Poles. Although our comprehension of MP behavior has progressed in recent years, it is still difficult to predict exposure hotspots or exposure scenarios. Despite a noteworthy increase in data concerning MP occurrence in different environmental compartments and species, there is a noticeable scarcity of experimental data on MP uptake, accumulation, and effects. This Virtual Special Issue (VSI) received a total of 19 contributions from 11 countries, with a significant majority originating from Italy, India, Spain, and China. These contributions were categorized into three main themes: the occurrence and effects of MPs on aquatic and terrestrial organisms, the presence of chemical additives in plastics, and review articles summarizing previously published research on MPs.
Collapse
Affiliation(s)
- Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|