1
|
Boutin J, Genevois C, Couillaud F, Lamrissi-Garcia I, Guyonnet-Duperat V, Bibeyran A, Lalanne M, Amintas S, Moranvillier I, Richard E, Blouin JM, Dabernat S, Moreau-Gaudry F, Bedel A. CRISPR editing to mimic porphyria combined with light: A new preclinical approach for prostate cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200772. [PMID: 38596305 PMCID: PMC10899051 DOI: 10.1016/j.omton.2024.200772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 04/11/2024]
Abstract
Thanks to its very high genome-editing efficiency, CRISPR-Cas9 technology could be a promising anticancer weapon. Clinical trials using CRISPR-Cas9 nuclease to ex vivo edit and alter immune cells are ongoing. However, to date, this strategy still has not been applied in clinical practice to directly target cancer cells. Targeting a canonical metabolic pathway essential to good functioning of cells without potential escape would represent an attractive strategy. We propose to mimic a genetic metabolic disorder in cancer cells to weaken cancer cells, independent of their genomic abnormalities. Mutations affecting the heme biosynthesis pathway are responsible for porphyria, and most of them are characterized by an accumulation of toxic photoreactive porphyrins. This study aimed to mimic porphyria by using CRISPR-Cas9 to inactivate UROS, leading to porphyrin accumulation in a prostate cancer model. Prostate cancer is the leading cancer in men and has a high mortality rate despite therapeutic progress, with a primary tumor accessible to light. By combining light with gene therapy, we obtained high efficiency in vitro and in vivo, with considerable improvement in the survival of mice. Finally, we achieved the preclinical proof-of-principle of performing cancer CRISPR gene therapy.
Collapse
Affiliation(s)
- Julian Boutin
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Coralie Genevois
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vivoptic Platform INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Franck Couillaud
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vivoptic Platform INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Isabelle Lamrissi-Garcia
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Veronique Guyonnet-Duperat
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vect’UB, Vectorology Platform, INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Alice Bibeyran
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vect’UB, Vectorology Platform, INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Magalie Lalanne
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Samuel Amintas
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Tumor Biology and Tumor Bank Laboratory, 33000 Bordeaux, France
| | - Isabelle Moranvillier
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Emmanuel Richard
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Jean-Marc Blouin
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Sandrine Dabernat
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - François Moreau-Gaudry
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Aurélie Bedel
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| |
Collapse
|
2
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
3
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
4
|
Abstract
Prostate cancer is a leading cause of death in men worldwide. For over 30 years, growing interest has focused on the development of vaccines as treatments for prostate cancer, with the goal of using vaccines to activate immune cells capable of targeting prostate cancer to either eradicate recurrent disease or at least delay disease progression. This interest has been prompted by the prevalence and long natural history of the disease and by the fact that the prostate is an expendable organ. Thus, an immune response elicited by vaccination might not need to target the tumour uniquely but could theoretically target any prostate tissue. To date, different vaccine approaches and targets for prostate cancer have been evaluated in clinical trials. Overall, five approaches have been assessed in randomized phase III trials and sipuleucel-T was approved as a treatment for metastatic castration-resistant prostate cancer, being the only vaccine approved to date by the FDA as a treatment for cancer. Most vaccine approaches showed safety and some evidence of immunological activity but had poor clinical activity when used as monotherapies. However, increased activity has been observed when these vaccines were used in combination with other immune-modulating therapies. This evidence suggests that, in the future, prostate cancer vaccines might be used to activate and expand tumour-specific T cells as part of combination approaches with agents that target tumour-associated immune mechanisms of resistance.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Anusha Muralidhar
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
5
|
Parsons JK, Pinto PA, Pavlovich CP, Uchio E, Nguyen MN, Kim HL, Gulley JL, Sater HA, Jamieson C, Hsu CH, Wojtowicz M, House M, Schlom J, Donahue RN, Dahut WL, Madan RA, Bailey S, Centuori S, Bauman JE, Parnes HL, Chow HHS. A Phase 2, Double-blind, Randomized Controlled Trial of PROSTVAC in Prostate Cancer Patients on Active Surveillance. Eur Urol Focus 2023; 9:447-454. [PMID: 36517408 PMCID: PMC10258223 DOI: 10.1016/j.euf.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/17/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is an unmet clinical need for interventions to prevent disease progression in patients with localized prostate cancer on active surveillance (AS). OBJECTIVE To determine the immunologic response to the PROSTVAC vaccine and the clinical indicators of disease progression in patients with localized prostate cancer on AS. DESIGN, SETTING, AND PARTICIPANTS This was a phase 2, double-blind, randomized controlled trial in 154 men with low- or intermediate-risk prostate cancer on AS. INTERVENTION Participants were randomized (2:1) to receive seven doses of subcutaneous PROSTVAC, a vaccinia/fowlpox viral vector-based immunotherapy containing a prostate-specific antigen (PSA) transgene and three T-cell co-stimulatory molecules, or an empty fowlpox vector (EV) over 140 d. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary outcome was the change from baseline in CD4 and CD8 T-cell infiltration in biopsy tumor tissue. Key secondary outcomes were safety and changes in prostate biopsy tumor pathology, peripheral antigen-specific T cells, and serum PSA. Continuous variables were compared using nonparametric tests. Categorical variables were compared using Fisher's exact test. RESULTS AND LIMITATIONS The PROSTVAC/EV vaccination was well tolerated. All except one participant completed the vaccination series. Changes in CD4 or CD8 density in biopsy tumor tissue did not differ between the PROSTVAC and EV arms. The proportions of patients with Gleason upgrading to grade group 3 after treatment was similar between the arms. There were no differences in postvaccination peripheral T-cell responses or the PSA change from baseline to 6-mo post-treatment follow-up between the groups. CONCLUSIONS In this first-of-kind trial of immunotherapy in patients on AS for prostate cancer, PROSTVAC did not elicit more favorable prostate tissue or peripheral T-cell responses than the EV. There was no difference between the arms in clinicopathologic effects. Despite the null findings, this is the first study reporting the feasibility and acceptability of an immunotherapy intervention in the AS setting. PATIENT SUMMARY We looked at responses after an experimental prostate cancer vaccine in patients with prostate cancer on active surveillance (AS). Participants who received the vaccine did not show more favorable outcomes than those receiving the control. Despite these findings, this is the first report showing the feasibility and acceptability of immunotherapy for prostate cancer in patients on AS.
Collapse
Affiliation(s)
- J Kellogg Parsons
- Department of Urology, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | | | | | - Edward Uchio
- Department of Urology, UC Irvine, Orange, CA, USA
| | - Mike N Nguyen
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Hyung L Kim
- Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Christina Jamieson
- Department of Urology, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | - Sara Centuori
- University of Arizona Cancer Center, Tucson, AZ, USA
| | | | | | | |
Collapse
|
6
|
Immunotherapy for Prostate Cancer: A Current Systematic Review and Patient Centric Perspectives. J Clin Med 2023; 12:jcm12041446. [PMID: 36835981 PMCID: PMC9966657 DOI: 10.3390/jcm12041446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer in men worldwide, making up 21% of all cancer cases. With 345,000 deaths per year owing to the disease, there is an urgent need to optimize prostate cancer care. This systematic review collated and synthesized findings of completed Phase III clinical trials administering immunotherapy; a current clinical trial index (2022) of all ongoing Phase I-III clinical trial records was also formulated. A total of four Phase III clinical trials with 3588 participants were included administering DCVAC, ipilimumab, personalized peptide vaccine, and the PROSTVAC vaccine. In this original research article, promising results were seen for ipilimumab intervention, with improved overall survival trends. A total of 68 ongoing trial records pooling in 7923 participants were included, spanning completion until June 2028. Immunotherapy is an emerging option for patients with prostate cancer, with immune checkpoint inhibitors and adjuvant therapies forming a large part of the emerging landscape. With various ongoing trials, the characteristics and premises of the prospective findings will be key in improving outcomes in the future.
Collapse
|
7
|
Wang G, Liu Y, Liu S, Lin Y, Hu C. Oncolyic Virotherapy for Prostate Cancer: Lighting a Fire in Winter. Int J Mol Sci 2022; 23:12647. [PMID: 36293504 PMCID: PMC9603894 DOI: 10.3390/ijms232012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
As the most common cancer of the genitourinary system, prostate cancer (PCa) is a global men's health problem whose treatments are an urgent research issue. Treatment options for PCa include active surveillance (AS), surgery, endocrine therapy, chemotherapy, radiation therapy, immunotherapy, etc. However, as the cancer progresses, the effectiveness of treatment options gradually decreases, especially in metastatic castration-resistant prostate cancer (mCRPC), for which there are fewer therapeutic options and which have a shorter survival period and worse prognosis. For this reason, oncolytic viral therapy (PV), with its exceptional properties of selective tumor killing, relatively good safety in humans, and potential for transgenic delivery, has attracted increasing attention as a new form of anti-tumor strategy for PCa. There is growing evidence that OV not only kills tumor cells directly by lysis but can also activate anticancer immunity by acting on the tumor microenvironment (TME), thereby preventing tumor growth. In fact, evidence of the efficacy of this strategy has been observed since the late 19th century. However, subsequently, interest waned. The renewed interest in this therapy was due to advances in biotechnological methods and innovations at the end of the 20th century, which was also the beginning of PCa therapy with OV. Moreover, in combination with chemotherapy, radiotherapy, gene therapy or immunotherapy, OV viruses can have a wide range of applications and can provide an effective therapeutic result in the treatment of PCa.
Collapse
Affiliation(s)
- Gongwei Wang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shuoru Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuan Lin
- Department of Pharmacology, Sun Yat-sen University, Guangzhou 528478, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
8
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
9
|
Perera S, McDonald J, Williams I, O'Brien J, Murphy D, Lawrentschuk N. Active Surveillance versus non-radical treatment for low-risk men with prostate cancer; A Review. Prostate Int 2022; 10:117-122. [PMID: 36225285 PMCID: PMC9520502 DOI: 10.1016/j.prnil.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Low-risk prostate cancer has traditionally seen a preference towards avoiding treatment-related harms with active surveillance (AS) and multimodal monitoring protocols utilized to assess for disease progression. Large trials have shown variations in mortality and cancer survival benefit between AS and radical treatment, which has prompted further trials into the management of low-risk disease. Nonradical treatments for men on AS have been an emerging field and yet to enter mainstream guidelines or practice. These include pharmacological treatments, focal therapy, nutraceuticals, immunotherapy, and exercise. We present a review of all current major randomized clinical trials for nonradical treatment of men on AS and summarize their findings.
Collapse
Affiliation(s)
- Sachin Perera
- Department of Urology and Department of Surgery, Royal Melbourne Hospital University of Melbourne, Australia
- EJ Whitten Foundation Prostate Cancer Research Centre at Epworth, Melbourne, Australia
- Corresponding author. Department of Urology, The Royal Melbourne Hospital, 300 Grattan St, Parkville VIC 3050, Australia.
| | - Jodie McDonald
- Department of Urology and Department of Surgery, Royal Melbourne Hospital University of Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Isabella Williams
- Department of Urology and Department of Surgery, Royal Melbourne Hospital University of Melbourne, Australia
| | - Jonathan O'Brien
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nathan Lawrentschuk
- Department of Urology and Department of Surgery, Royal Melbourne Hospital University of Melbourne, Australia
- EJ Whitten Foundation Prostate Cancer Research Centre at Epworth, Melbourne, Australia
| |
Collapse
|
10
|
Vaccines for Non-Viral Cancer Prevention. Int J Mol Sci 2021; 22:ijms222010900. [PMID: 34681560 PMCID: PMC8535337 DOI: 10.3390/ijms222010900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer vaccines are a type of immune therapy that seeks to modulate the host’s immune system to induce durable and protective immune responses against cancer-related antigens. The little clinical success of therapeutic cancer vaccines is generally attributed to the immunosuppressive tumor microenvironment at late-stage diseases. The administration of cancer-preventive vaccination at early stages, such as pre-malignant lesions or even in healthy individuals at high cancer risk could increase clinical efficacy by potentiating immune surveillance and pre-existing specific immune responses, thus eliminating de novo appearing lesions or maintaining equilibrium. Indeed, research focus has begun to shift to these approaches and some of them are yielding encouraging outcomes.
Collapse
|
11
|
Gregg JR, Thompson TC. Considering the potential for gene-based therapy in prostate cancer. Nat Rev Urol 2021; 18:170-184. [PMID: 33637962 DOI: 10.1038/s41585-021-00431-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Therapeutic gene manipulation has been at the forefront of popular scientific discussion and basic and clinical research for decades. Basic and clinical research applications of CRISPR-Cas9-based technologies and ongoing clinical trials in this area have demonstrated the potential of genome editing to cure human disease. Evaluation of research and clinical trials in gene therapy reveals a concentration of activity in prostate cancer research and practice. Multiple aspects of prostate cancer care - including anatomical considerations that enable direct tumour injections and sampling, the availability of preclinical immune-competent models and the delineation of tumour-related antigens that might provide targets for an induced immune system - make gene therapy an appealing treatment option for this common malignancy. Vaccine-based therapies that induce an immune response and new technologies exploiting CRISPR-Cas9-assisted approaches, including chimeric antigen receptor (CAR) T cell therapies, are very promising and are currently under investigation both in the laboratory and in the clinic. Although laboratory and preclinical advances have, thus far, not led to oncologically relevant outcomes in the clinic, future studies offer great promise for gene therapy to become established in prostate cancer care.
Collapse
Affiliation(s)
- Justin R Gregg
- Department of Urology and Health Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Adamaki M, Zoumpourlis V. Immunotherapy as a Precision Medicine Tool for the Treatment of Prostate Cancer. Cancers (Basel) 2021; 13:E173. [PMID: 33419051 PMCID: PMC7825410 DOI: 10.3390/cancers13020173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed type of cancer among Caucasian males over the age of 60 and is characterized by remarkable heterogeneity and clinical behavior, ranging from decades of indolence to highly lethal disease. Despite the significant progress in PCa systemic therapy, therapeutic response is usually transient, and invasive disease is associated with high mortality rates. Immunotherapy has emerged as an efficacious and non-toxic treatment alternative that perfectly fits the rationale of precision medicine, as it aims to treat patients on the basis of patient-specific, immune-targeted molecular traits, so as to achieve the maximum clinical benefit. Antibodies acting as immune checkpoint inhibitors and vaccines entailing tumor-specific antigens seem to be the most promising immunotherapeutic strategies in offering a significant survival advantage. Even though patients with localized disease and favorable prognostic characteristics seem to be the ones that markedly benefit from such interventions, there is substantial evidence to suggest that the survival benefit may also be extended to patients with more advanced disease. The identification of biomarkers that can be immunologically targeted in patients with disease progression is potentially amenable in this process and in achieving significant advances in the decision for precision treatment of PCa.
Collapse
Affiliation(s)
- Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | | |
Collapse
|
13
|
Watanabe N, McKenna MK, Rosewell Shaw A, Suzuki M. Clinical CAR-T Cell and Oncolytic Virotherapy for Cancer Treatment. Mol Ther 2020; 29:505-520. [PMID: 33130314 DOI: 10.1016/j.ymthe.2020.10.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has recently garnered success with the induction of clinical responses in tumors, which are traditionally associated with poor outcomes. Chimeric antigen receptor T (CAR-T) cells and oncolytic viruses (OVs) have emerged as promising cancer immunotherapy agents. Herein, we provide an overview of the current clinical status of CAR-T cell and OV therapies. While preclinical studies have demonstrated curative potential, the benefit of CAR-T cells and OVs as single-agent treatments remains limited to a subset of patients. Combinations of different targeted therapies may be required to achieve efficient, durable responses against heterogeneous tumors, as well as the microenvironment. Using a combinatorial approach to take advantage of the unique features of CAR-T cells and OVs with other treatments can produce additive therapeutic effects. This review also discusses ongoing clinical evaluations of these combination strategies for improved outcomes in treatment of resistant malignancies.
Collapse
Affiliation(s)
- Norihiro Watanabe
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mary Kathryn McKenna
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Patel D, McKay R, Parsons JK. Immunotherapy for Localized Prostate Cancer: The Next Frontier? Urol Clin North Am 2020; 47:443-456. [PMID: 33008495 DOI: 10.1016/j.ucl.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer vaccines, cytokines, and checkpoint inhibitors are immunotherapeutic agents that act within the cancer immunity cycle. Prostate cancer has provided unique opportunities for, and challenges to, immunotherapy drug development, including low tumor mutational burdens, limited expression of PD-L1, and minimal T-cell intratumoral infiltrates. Nevertheless, efforts are ongoing to help prime prostate tumors by turning a "cold" prostate cancer "hot" and thus rendering them more susceptible to immunotherapy. Combination treatments, use of molecular biomarkers, and use of new immunotherapeutic agents provide opportunities to enhance the immune response to prostate tumors.
Collapse
Affiliation(s)
- Devin Patel
- Department of Urology, University of California San Diego, 9400 Campus Point Drive, MC7987, La Jolla, CA 92093, USA
| | - Rana McKay
- Division of Hematology-Oncology, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - J Kellogg Parsons
- Department of Urology, University of California San Diego, 9400 Campus Point Drive, MC7987, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Bovine papillomavirus prostate cancer antigen virus-like particle vaccines are efficacious in advanced cancers in the TRAMP mouse spontaneous prostate cancer model. Cancer Immunol Immunother 2020; 69:641-651. [DOI: 10.1007/s00262-020-02493-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022]
|
16
|
Filipić B, Stojić-Vukanić Z. Active immunotherapy of cancer: An overview of therapeutic vaccines. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|