1
|
Dunphy K, Dowling P. DIGE-Based Biomarker Discovery in Blood Cancers. Methods Mol Biol 2023; 2596:105-112. [PMID: 36378434 DOI: 10.1007/978-1-0716-2831-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer of blood or bone marrow-derived cells dysregulates normal hematopoiesis and accounts for over 6% of all cancer cases annually. Proteomic analyses of blood cancers have improved our understanding of disease mechanisms and identified numerous proteins of clinical relevance. For many years, gel-based proteomic studies have aided in the discovery of novel diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, in various diseases, including blood cancer. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) facilitates comparative proteomic research to identify differential protein expression in a simple and reproducible manner. The versatility of 2D-DIGE as a quantitative proteomic technique has provided insight into various aspects of blood cancer pathology, including disease development, prognostic subtypes, and drug resistance. The ability to couple 2D-DIGE with additional downstream mass spectrometry-based techniques yields comprehensive workflows capable of identifying proteins of biological and clinical significance. The application of 2D-DIGE in blood cancer research has significantly contributed to the increasingly important initiative of precision medicine. This chapter will focus on the influential role of 2D-DIGE as a tool in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Fasih Ramandi N, Soleimani Mashhadi I, Sharif A, Saeedi N, Ashabi MA, Faranoush M, Ghassempour A, Aboul-Enein HY. Study of Glutathione S-transferase-P1 in cancer blood plasma after extraction by affinity magnetic nanoparticles and monitoring by MALDI-TOF, IM-Q-TOF and LC-ESI-Q-TOF MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1190:123091. [PMID: 34979454 DOI: 10.1016/j.jchromb.2021.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Glutathione S-transferase P1 (GST-P1) is considered as a detoxification enzyme and can be upregulated in several cancers. Therefore, qualification and/or quantification of GST-P1 in biological fluids can be noteworthy in cancer diagnostic and/or prognostic methods. Whereas costly immunoassays methods are routinely used for clinical analysis, long analysis time per sample is still considered as their disadvantages. To create a fast, efficient, and economical GST-P1 qualification and/or quantification technique, we developed an affinity magnetic nanoparticle-MS method. In proposed method there is no need for any pretreatment for reducing the complexity of sample and depletion of high abundant proteins that are used in routinely immunoassays methods. After enrichment of GST-P1 from blood plasma samples by affinity magnetic nanoparticle (without any pretreatment), the final eluent was analyzed using MALDI-TOF, IM-Q-TOF and LC-ESI-Q-TOF MS. For the first time this study demonstrates the suitability of affinity magnetic nanoparticle-MS method for qualification/quantification of GST-P1 from acute lymphoblastic leukemia blood plasma samples with the limit-of-detection 0.0094 ppm in less than 5 h. Our finding showed that in these blood plasma samples the level of GST-P1 can be up to six times more than healthy children.
Collapse
Affiliation(s)
- Negin Fasih Ramandi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | | | - Amirreza Sharif
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Negar Saeedi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Mohammad Ali Ashabi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
3
|
Fasih Ramandi N, Faranoush M, Ghassempour A, Aboul-Enein HY. Mass Spectrometry: A Powerful Method for Monitoring Various Type of Leukemia, Especially MALDI-TOF in Leukemia's Proteomics Studies Review. Crit Rev Anal Chem 2021; 52:1259-1286. [PMID: 33499652 DOI: 10.1080/10408347.2021.1871844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent success in studying the proteome, as a source of biomarkers, has completely changed our understanding of leukemia (blood cancer). The identification of differentially expressed proteins, such as relapse and drug resistance proteins involved in leukemia by using various ionization sources and mass analyzers of mass spectrometry techniques, has helped scientists find better diagnosis, prognosis, and treatment strategies. With the aid of this powerful analytical technique, we can investigate the qualification/quantification of proteins, protein-protein interactions, post-translational modifications, and find the correlation between proteins and their genes with the hope of finding the missing parts of the successful therapy puzzle. In this review, we followed different MS sources and analyzers which used for monitoring various type of leukemia, then focused on MALDI-TOF MS as a quick and reliable method for studying proteins. Due to several review published for other techniques, the present review is the first work in this field. Also, by classifying more than 400 proteins, we have found 42 proteins are involved in two or three different stages of leukemia. Finally, we have suggested six specific biomarkers for AML, one for ALL, three biomarkers with a role in the etiology of leukemia and 13 markers with the potential for further studies.
Collapse
Affiliation(s)
- Negin Fasih Ramandi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Cairo, Egypt
| |
Collapse
|
4
|
Citalan-Madrid AF, Cabral-Pacheco GA, Martinez-de-Villarreal LE, Villarreal-Martinez L, Ibarra-Ramirez M, Garza-Veloz I, Cardenas-Vargas E, Marino-Martinez I, Martinez-Fierro ML. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:637-650. [PMID: 31514680 DOI: 10.1080/16078454.2019.1664127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a hematological malignancy of immature B-cell precursors, affecting children more often than adults. The etiology of BCP-ALL is still unknown, but environmental factors, sex, race or ethnicity, and genomic alterations influence the development of the disease. Tools based on protein detection, such as flow cytometry, mass spectrometry, mass cytometry and reverse phase protein array, represent an opportunity to investigate BCP-ALL pathogenesis and to identify new biomarkers of disease. This review aims to document the recent advancements with respect to applications of proteomic technologies to study mechanisms of leukemogenesis, how this information could be used in the discovery of biological targets, and finally we describe the challenges of application of proteomic tools for the approach of BCP-ALL.
Collapse
Affiliation(s)
- Alí F Citalan-Madrid
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Griselda A Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | | | - Laura Villarreal-Martinez
- Hematology Service, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Marisol Ibarra-Ramirez
- Departamento de Genetica, Facultad de Medicina, Universidad Autónoma de Nuevo Leon , Monterrey , Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Edith Cardenas-Vargas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Hospital General Zacatecas 'Luz González Cosío' , Zacatecas , Mexico
| | - Ivan Marino-Martinez
- Departamento de Patologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| |
Collapse
|
5
|
Aguirre-Guillén WA, Angeles-Floriano T, López-Martínez B, Reyes-Morales H, Zlotnik A, Valle-Rios R. Omics techniques and biobanks to find new biomarkers for the early detection of acute lymphoblastic leukemia in middle-income countries: a perspective from Mexico. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2018; 74:227-232. [PMID: 29382491 DOI: 10.1016/j.bmhimx.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) affects the quality of life of many children in the world and particularly in Mexico, where a high incidence has been reported. With a proper financial investment and with well-organized institutions caring for those patients, together with solid platforms to perform high-throughput analyses, we propose the creation of a Mexican repository system of serum and cells from bone marrow and blood samples derived from tissues of pediatric patients with ALL diagnosis. This resource, in combination with omics technologies, particularly proteomics and metabolomics, would allow longitudinal studies, offering an opportunity to design and apply personalized ALL treatments. Importantly, it would accelerate the development of translational science and will lead us to further discoveries, including the identification of new biomarkers for the early detection of leukemia.
Collapse
Affiliation(s)
- William Alejandro Aguirre-Guillén
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Unidad Biológica y de Ciencias de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Tania Angeles-Floriano
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida López-Martínez
- Sub-Dirección de Diagnóstico Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Hortensia Reyes-Morales
- Departamento de Investigación, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Albert Zlotnik
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Ricardo Valle-Rios
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Unidad de investigación Escuela de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
6
|
Machado-Neto JA, Rodrigues Alves APN, Fernandes JC, Coelho-Silva JL, Scopim-Ribeiro R, Fenerich BA, da Silva FB, Scheucher PS, Simões BP, Rego EM, Traina F. Paclitaxel induces Stathmin 1 phosphorylation, microtubule stability and apoptosis in acute lymphoblastic leukemia cells. Heliyon 2017; 3:e00405. [PMID: 29034341 PMCID: PMC5629349 DOI: 10.1016/j.heliyon.2017.e00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/04/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by abnormal proliferation and accumulation of lymphoblasts in the hematopoietic system. Stathmin 1 is a proliferation marker for normal lymphocytes, which has been described as highly expressed in ALL patients and functionally important for leukemia phenotype. In the present study, we expand our previous observations and aim to investigate Stathmin 1 expression and its impact on laboratory features and clinical outcomes in an independent cohort of ALL patients, and to verify the effects of paclitaxel treatment on Stathmin 1 phosphorylation and cell viability in ALL cell lines. In ALL patients, Stathmin 1 expression was significantly increased, associated with lower age onset and positively correlated with white blood cell counts, but did not impact on clinical outcomes. Functional assays revealed that paclitaxel induces Stathmin 1 phosphorylation at serine 16 (an inhibitory site), microtubule stability and apoptosis in Jurkat and Namalwa cell lines. Paclitaxel treatment did not modulate cell viability of normal peripheral blood leukocytes. In conclusion, our data confirm increased levels of Stathmin 1 in ALL patients and that therapeutic doses of paclitaxel inhibits Stathmin 1 function and promote microtubule stability and apoptosis in ALL cells.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Nunes Rodrigues Alves
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Cristina Fernandes
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Renata Scopim-Ribeiro
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Alves Fenerich
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Borges da Silva
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Priscila Santos Scheucher
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Belinda Pinto Simões
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Karmakar S, Banerjee D, Chakrabarti A. Platelet proteomics in thalassemia: Factors responsible for hypercoagulation. Proteomics Clin Appl 2016; 10:239-47. [PMID: 26403856 DOI: 10.1002/prca.201500049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/28/2015] [Accepted: 09/21/2015] [Indexed: 01/19/2023]
Abstract
PURPOSE Thalassemias can be defined as a group with inherited hemolytic anemia due to differential expressions of α and β globin genes. Hemoglobin E combined with β thalassemia (HbEβ) creates high oxidative stress in platelets producing different degrees of pathophysiological severity. Numerous cases of thalassemia have been reported with thromboembolic complications due to the hypercoagulable state, the mechanism underlying that is not yet well understood. EXPERIMENTAL DESIGN We have used 2DE and DIGE coupled with MALDI TOF/TOF-based MS identification and characterization of altered proteins in both splenectomized and nonsplenectomized HbEβ and β thalassemia to investigate the factors responsible for hypercoagulation. RESULTS The study revealed elevated levels of chaperones like HSP70, protein disulfide isomerase; oxidative stress proteins like peroxiredoxin2 and superoxide dismutase1 along with high ROS levels. Upregulation of translation initiation factor 5a observed in thalassemia is a novel finding and plays a protective role toward cell survival under oxidative stress. CONCLUSIONS AND CLINICAL RELEVANCE The altered levels of chaperones and oxidative stress proteins indicate toward regulation of integrin binding and platelet activation under oxidative stress. Altogether, this comparative proteomics study of platelets in thalassemia could provide an insight into better understanding of the pathophysiology of the disease.
Collapse
Affiliation(s)
- Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Debasis Banerjee
- Hematology Unit, Ramakrishna Mission Seva Prathisthan, Kolkata, India
- Clinical Haematology Service, Park Clinic, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
8
|
Karmakar S, Saha S, Banerjee D, Chakrabarti A. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins. Eur J Haematol 2014; 94:43-50. [PMID: 24934967 DOI: 10.1111/ejh.12398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. METHODS We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. RESULTS AND CONCLUSION Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size.
Collapse
Affiliation(s)
- Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | |
Collapse
|