1
|
Novoa C, Solano JL, Ballesteros-Acosta HN, Lamprea MR, Ortega LA. Nicotine Differentially Modulates Emotional-Locomotor Interactions for Adult or Adolescent Rats. REVISTA COLOMBIANA DE PSICOLOGÍA 2022. [DOI: 10.15446/rcp.v31n1.89822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous research has shown that exposure to nicotine and other drugs of abuse stimulate dopaminergic neurons in the mesolimbic circuit. Sustained activation of this circuit by prolonged exposure to drugs promotes locomotor sensitization. However, there are inconsistent reports about nicotine-induced locomotor sensitization when assessed among different developmental stages. We evaluated exploratory behavior on specific areas of the open field as an indicator of behavioral disinhibition and general locomotor activity as an indicator of nicotine-induced locomotor sensitization, to further explore the mechanisms underlying behavioral adaptations to nicotine exposure in animals from different developmental stages. We found that while adolescent and adult rats are equally responsive to nicotine-induced locomotor sensitization, nicotine disrupts inhibition of risk-related behavior only in adolescent rats. Together, our results suggest that chronic daily exposure to nicotine promotes potentiation of its stimulant effects on locomotor activity. In adolescents, this effect is accompanied by a decreased capacity to inhibit risk-related behaviors under the acute effect of the drug.
How to cite this article: Novoa, C., Solano, J. L., Ballesteros-Acosta, H., Lamprea, R. M., & Ortega, L. A. (2021). Nicotine Differentially Modulates Emotional-Locomotor Interactions for Adult or Adolescent Rats. Revista Colombiana de Psicología, 31(1), 13-22. https://doi.org/10.15446/rcp.v31n1.89822
Collapse
|
2
|
Allain AE, Aribo O, Medrano MC, Fournier ML, Bertrand SS, Caille S. Impact of acute and chronic nicotine administration on midbrain dopaminergic neuron activity and related behaviors in TRPV1 knock-out juvenile mice. Eur J Neurosci 2021; 55:697-713. [PMID: 34939238 DOI: 10.1111/ejn.15577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
The addictive properties of nicotine, the main alkaloid in tobacco and tobacco-derived products, largely depend on its action on the activity of midbrain dopamine (DA) neurons. The Transient Receptor Potential Vanilloid 1 (TRPV1) channel has also been examined as an emerging contributor to addiction-related symptoms due to its ability to modulate midbrain neurons. Thus, the objective of our study was to explore the role of TRPV1 receptors (TRPV1Rs) on nicotine-induced behaviors and associated response of DA neuron activity. Both wild type juvenile mice and juvenile mice with invalidation of the TRPV1R gene were exposed to acute or chronic nicotine 0.3 mg/kg administration. We analyzed locomotor activity in response to the drug. In addition, we performed cell-attached and whole-cell recordings from ventral tegmental area (VTA) neurons after nicotine exposure. Our results showed that the genetic deletion of TRPV1Rs reduced nicotine-induced locomotor sensitization. In addition, it provided evidence in support of TRPV1Rs being regulators of inhibitory synaptic transmission in the VTA. However, TRPV1Rs did not seem to modulate either nicotine-induced conditioning place preference or nicotine-evoked electrical activity of DA neurons. In conclusion, TRPV1Rs modulate nicotine-induced psychomotor sensitization in mice independently of a control on VTA DA neuron activity. Thus, TRPV1R control may depend on another key player of the mesolimbic circuit.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.,Univ. Bordeaux, CNRS, PHYCELL Platform INCIA, UMR 5287, Bordeaux, France
| | - Oceane Aribo
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | | | - Sandrine S Bertrand
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.,Univ. Bordeaux, CNRS, PHYCELL Platform INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
3
|
Gill WD, Burgess KC, Vied C, Brown RW. Transgenerational evidence of increases in dopamine D2 receptor sensitivity in rodents: Impact on sensorimotor gating, the behavioral response to nicotine and BDNF. J Psychopharmacol 2021; 35:1188-1203. [PMID: 34291671 PMCID: PMC9169618 DOI: 10.1177/02698811211033927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 (DAD2) receptor sensitivity in adult animals. We investigated if increased DAD2 sensitivity would be passed to the next (F1) generation, and if these animals demonstrated sensorimotor gating deficits and enhanced behavioral responses to nicotine. METHODS Male and female rats were intraperitoneal (IP) administered quinpirole (1 mg/kg) or saline (NS) from postnatal day (P)1-21. Animals were either behaviorally tested (F0) or raised to P60 and mated, creating F1 offspring. RESULTS Experiment 1 revealed that F1 generation animals that were the offspring of at least one NQ-treated founder increased yawning behavior, a DAD2-mediated behavioral event, in response to acute quinpirole (0.1 mg/kg). F1 generation rats also demonstrated increased striatal β arrestin-2 and decreased phospho-AKT signaling, consistent with increased G-protein independent DAD2 signaling, which was equal to F0 NQ-treated founders, although this was not observed in all groups. RNA-Seq analysis revealed significant gene expression changes in the F1 generation that were offspring of both NQ-treated founders compared to F0 NQ founders and controls, with enrichment in sensitivity to stress hormones and cell signaling pathways. In Experiment 2, all F1 generation offspring demonstrated sensorimotor gating deficits compared to controls, which were equivalent to F0 NQ-treated founders. In Experiment 3, all F1 generation animals demonstrated enhanced nicotine behavioral sensitization and nucleus accumbens (NAcc) brain-derived neurotrophic factor (BDNF) protein. Further, F1 generation rats demonstrated enhanced adolescent nicotine conditioned place preference equivalent to NQ-treated founders conditioned with nicotine. CONCLUSIONS This represents the first demonstration of transgenerational effects of increased DAD2 sensitivity in a rodent model.
Collapse
Affiliation(s)
- Wesley Drew Gill
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Katherine C Burgess
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Russell W Brown
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
4
|
The Role of CaMKII and ERK Signaling in Addiction. Int J Mol Sci 2021; 22:ijms22063189. [PMID: 33804804 PMCID: PMC8004038 DOI: 10.3390/ijms22063189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Collapse
|
5
|
Jia W, Wilar G, Kawahata I, Cheng A, Fukunaga K. Impaired Acquisition of Nicotine-Induced Conditioned Place Preference in Fatty Acid-Binding Protein 3 Null Mice. Mol Neurobiol 2021; 58:2030-2045. [PMID: 33411237 DOI: 10.1007/s12035-020-02228-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Nicotine causes psychological dependence through its interactions with nicotinic acetylcholine receptors in the brain. We previously demonstrated that fatty acid-binding protein 3 (FABP3) colocalizes with dopamine D2 receptors (D2Rs) in the dorsal striatum, and FABP3 deficiency leads to impaired D2R function. Moreover, D2R null mice do not exhibit increased nicotine-induced conditioned place preference (CPP) following chronic nicotine administration. To investigate the role of FABP3 in nicotine-induced CPP, FABP3 knockout (FABP3-/-) mice were evaluated using a CPP apparatus following consecutive nicotine administration (0.5 mg/kg) for 14 days. Importantly, nicotine-induced CPP was suppressed in the conditioning, withdrawal, and relapse phases in FABP3-/- mice. To resolve the mechanisms underlying impaired nicotine-induced CPP in these mice, we assessed c-Fos expression and Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) signaling in both dopamine D1 receptor (D1R)- and D2R-positive neurons in the nucleus accumbens (NAc). Notably, 64% of dopamine receptor-positive neurons in the mouse NAc expressed both D1R and D2R. Impaired nicotine-induced CPP was correlated with lack of responsiveness of both CaMKII and ERK phosphorylation. The number of D2R-positive neurons was increased in FABP3-/- mice, while the number of D1R-positive neurons and the responsiveness of c-Fos expression to nicotine were decreased. The aberrant c-Fos expression was closely correlated with CaMKII but not ERK phosphorylation levels in the NAc of FABP3-/- mice. Taken together, these results indicate that impaired D2R signaling due to lack of FABP3 may affect D1R and c-Fos signaling and underlie nicotine-induced CPP behaviors.
Collapse
Affiliation(s)
- Wenbin Jia
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - Gofarana Wilar
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, JL. Raya Bandung-Sumedang KM 20.5 Jatinangor, Sumedang, Jawa Barat, 45363, Indonesia
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-0845, Japan. .,, Sendai, Japan.
| |
Collapse
|
6
|
Ur Rehman N, Abbas M, Al-Rashida M, Tokhi A, Arshid MA, Khan MS, Ahmad I, Rauf K. Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide on Acquisition and Expression of Nicotine-Induced Behavioral Sensitization and Striatal Adenosine Levels. Drug Des Devel Ther 2020; 14:3777-3786. [PMID: 32982182 PMCID: PMC7505708 DOI: 10.2147/dddt.s270025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Behavioral sensitization is a phenomenon that develops from intermittent exposure to nicotine and other psychostimulants, which often leads to heightened locomotor activity and then relapse. Sulfonamides that act as carbonic anhydrase inhibitors have a documented role in enhancing dopaminergic tone and normalizing neuroplasticity by stabilizing glutamate release. Objective The aim of the current study was to explore synthetic sulfonamides derivative 4-fluoro-N-(4-sulfamoylbenzyl) benzene-sulfonamide (4-FBS) (with documented carbonic anhydrase inhibitory activity) on acquisition and expression of nicotine-induced behavioral sensitization. Methods In the acquisition phase, selected 5 groups of mice were exposed to saline or nicotine 0.5mg/kg intraperitoneal (i.p) for 7 consecutive days. Selected 3 groups were administered with 4-FBS 20, 40, and 60 mg/kg p.o. along with nicotine. After 3 days of the drug-free period, ie, day 11, a challenge dose of nicotine was injected to all groups except saline and locomotor activity was recorded for 30 minutes. In the expression phase, mice were exposed to saline and nicotine only 0.5 mg/kg i.p for 7 consecutive days. After 3 days of the drug-free period, ie, day 11, 4-FBS at 20, 40, and 60 mg/kg were administered to the selected groups, one hour after drug a nicotine challenge dose was administered, and locomotion was recorded. At the end of behavioral experiments, all animals were decapitated and the striatum was excised and screened for changes in adenosine levels, using HPLC-UV. Results Taken together, our findings showed that 4-FBS in all 3 doses, in both sets of experiments significantly attenuated nicotine-induced behavioral sensitization in mice. Additionally, 4-FBS at 60mg/kg significantly lowered the adenosine level in the striatum. Conclusion The behavioral and adenosine modulation is promising, and more receptors level studies are warranted to explore the exact mechanism of action of 4-FBS.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Muhammad Sona Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Izhar Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| |
Collapse
|
7
|
Repeated nicotine vapor inhalation induces behavioral sensitization in male and female C57BL/6 mice. Behav Pharmacol 2020; 31:583-590. [DOI: 10.1097/fbp.0000000000000562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Hirotsu C, Pedroni MN, Berro LF, Tufik S, Andersen ML. Nicotine and sleep deprivation: impact on pain sensitivity and immune modulation in rats. Sci Rep 2018; 8:13837. [PMID: 30218019 PMCID: PMC6138689 DOI: 10.1038/s41598-018-32276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 06/01/2018] [Indexed: 11/09/2022] Open
Abstract
Repeated nicotine administration has been associated with increased paradoxical sleep in rats and antinociceptive properties, whereas paradoxical sleep deprivation (PSD) elicits pronociceptive and inflammatory responses. Thus, we aimed to evaluate the effect of repeated nicotine administration and its withdrawal combined with PSD on pain sensitivity and inflammatory markers. Sixty adult male Wistar rats were subjected to repeated injections of saline (SAL) or nicotine (NIC) for 12 days or 7 days of nicotine followed by acute mecamylamine administration on day 8 to precipitate nicotine abstinence (ABST). On day 9, the animals were submitted to PSD for 72 h or remained in control condition (CTRL); on day 12, thermal pain threshold was assessed by the hot plate test. PSD significantly decreased the latency to paw withdrawal in all groups compared to their respective controls. ABST-PSD animals presented higher levels of interleukin (IL)-6 compared to all groups, except ABST-CTRL. After adjustment for weight loss, IL-6, IL-4 and tumor necrosis factor alpha, ABST-PSD was associated with the lowest pain threshold. Nicotine and IL-4 levels were predictors of higher pain threshold. Hyperalgesia induced by PSD prevailed over the antinociceptive action of nicotine, while the association between PSD and ABST synergistically increased IL-6 concentrations and decreased pain threshold.
Collapse
Affiliation(s)
- Camila Hirotsu
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Laís Fernanda Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, USA
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Levy Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Goutier W, Lowry JP, McCreary AC, O'Connor JJ. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum. Neurochem Res 2016; 41:945-50. [PMID: 26975318 DOI: 10.1007/s11064-015-1786-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/23/2023]
Abstract
Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.
Collapse
Affiliation(s)
- W Goutier
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands.,Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - J P Lowry
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - A C McCreary
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands
| | - J J O'Connor
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland. .,UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Ireland.
| |
Collapse
|