1
|
Yan Y, Park DI, Horn A, Golub M, Turck CW, Golub M, W. Turck C. Delineation of biomarkers and molecular pathways of residual effects of fluoxetine treatment in juvenile rhesus monkeys by proteomic profiling. Zool Res 2023; 44:30-42. [PMID: 36266933 PMCID: PMC9841182 DOI: 10.24272/j.issn.2095-8137.2022.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fluoxetine (Prozac™) is the only antidepressant approved by the US Food and Drug Administration (FDA) for the treatment of major depressive disorder (MDD) in children. Despite its considerable efficacy as a selective serotonin reuptake inhibitor, the possible long-term effects of fluoxetine on brain development in children are poorly understood. In the current study, we aimed to delineate molecular mechanisms and protein biomarkers in the brains of juvenile rhesus macaques (Macaca mulatta) one year after the discontinuation of fluoxetine treatment using proteomic and phosphoproteomic profiling. We identified several differences in protein expression and phosphorylation in the dorsolateral prefrontal cortex (DLPFC) and cingulate cortex (CC) that correlated with impulsivity in animals, suggesting that the GABAergic synapse pathway may be affected by fluoxetine treatment. Biomarkers in combination with the identified pathways contribute to a better understanding of the mechanisms underlying the chronic effects of fluoxetine after discontinuation in children.
Collapse
Affiliation(s)
- Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Dong Ik Park
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Anja Horn
- Ludwig-Maximilians-Universität, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Munich 80336, Germany
| | - Mari Golub
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich 80804, Germany,E-mail:
| | | | | | | | | | | | | |
Collapse
|
2
|
Tkachev A, Stekolshchikova E, Bobrovskiy DM, Anikanov N, Ogurtsova P, Park DI, Horn AKE, Petrova D, Khrameeva E, Golub MS, Turck CW, Khaitovich P. Long-Term Fluoxetine Administration Causes Substantial Lipidome Alteration of the Juvenile Macaque Brain. Int J Mol Sci 2021; 22:ijms22158089. [PMID: 34360852 PMCID: PMC8348031 DOI: 10.3390/ijms22158089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fluoxetine is an antidepressant commonly prescribed not only to adults but also to children for the treatment of depression, obsessive-compulsive disorder, and neurodevelopmental disorders. The adverse effects of the long-term treatment reported in some patients, especially in younger individuals, call for a detailed investigation of molecular alterations induced by fluoxetine treatment. Two-year fluoxetine administration to juvenile macaques revealed effects on impulsivity, sleep, social interaction, and peripheral metabolites. Here, we built upon this work by assessing residual effects of fluoxetine administration on the expression of genes and abundance of lipids and polar metabolites in the prelimbic cortex of 10 treated and 11 control macaques representing two monoamine oxidase A (MAOA) genotypes. Analysis of 8871 mRNA transcripts, 3608 lipids, and 1829 polar metabolites revealed substantial alterations of the brain lipid content, including significant abundance changes of 106 lipid features, accompanied by subtle changes in gene expression. Lipid alterations in the drug-treated animals were most evident for polyunsaturated fatty acids (PUFAs). A decrease in PUFAs levels was observed in all quantified lipid classes excluding sphingolipids, which do not usually contain PUFAs, suggesting systemic changes in fatty acid metabolism. Furthermore, the residual effect of the drug on lipid abundances was more pronounced in macaques carrying the MAOA-L genotype, mirroring reported behavioral effects of the treatment. We speculate that a decrease in PUFAs may be associated with adverse effects in depressive patients and could potentially account for the variation in individual response to fluoxetine in young people.
Collapse
Affiliation(s)
- Anna Tkachev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Elena Stekolshchikova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Daniil M. Bobrovskiy
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia;
| | - Nickolay Anikanov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Polina Ogurtsova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Dong Ik Park
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
| | - Anja K. E. Horn
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany;
| | - Daria Petrova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Mari S. Golub
- California National Primate Research Center, University of California, Davis, CA 95616, USA
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Philipp Khaitovich
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| |
Collapse
|
3
|
Golub MS, Hogrefe CE, Campos LJ, Fox AS. Serotonin Transporter Binding Potentials in Brain of Juvenile Monkeys 1 Year After Discontinuation of a 2-Year Treatment With Fluoxetine. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:948-955. [PMID: 31471184 DOI: 10.1016/j.bpsc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND The potential long-term effects of childhood fluoxetine therapy on brain serotonin systems were studied using a nonhuman primate model, the rhesus monkey. METHODS Juvenile male rhesus (1-4 years of age, corresponding to 4-11 years of age in children) were treated orally with fluoxetine (2 mg/kg) or vehicle daily for 2 years and removed from treatment during the third year. Each treatment group was assigned an equal number of subjects with low and high transcription polymorphisms of MAOA. One year after discontinuation of treatment, positron emission tomography scans were conducted (n = 8 treated monkeys, n = 8 control monkeys) using [11C]DASB to quantify serotonin transporter in 16 cortical and subcortical regions. RESULTS Fluoxetine-treated monkeys with MAOA low transcription polymorphism had significantly lower [11C]DASB binding potentials than control monkeys. This finding was seen throughout the brain but was strongest in prefrontal and cingulate cortices. The MAOA × fluoxetine interaction was enhanced by binding potentials that were nonsignificantly higher in monkeys with high transcription polymorphism. CONCLUSIONS Juvenile fluoxetine treatment has residual posttreatment effects on brain serotonin transporter that depend on MAOA genotype. MAOA genotype may be important to consider when treating children with fluoxetine.
Collapse
Affiliation(s)
- Mari S Golub
- California National Primate Research Center, University of California, Davis, California.
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California
| | - Lillian J Campos
- California National Primate Research Center, University of California, Davis, California
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| |
Collapse
|
4
|
Nilsson KW, Åslund C, Comasco E, Oreland L. Gene-environment interaction of monoamine oxidase A in relation to antisocial behaviour: current and future directions. J Neural Transm (Vienna) 2018; 125:1601-1626. [PMID: 29881923 PMCID: PMC6224008 DOI: 10.1007/s00702-018-1892-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022]
Abstract
Since the pioneering finding of Caspi and co-workers in 2002 that exposure to childhood maltreatment predicted later antisocial behaviour (ASB) in male carriers of the low-activity MAOA-uVNTR allele, frequent replication studies have been published. Two meta-analyses, one in 2006 and the other in 2014, confirmed the original findings by Caspi and co-workers. In the present paper, we review the literature, note some methodological aspects of candidate gene–environment interaction (cG×E) studies and suggest some future directions. Our conclusions are as follows. (1) The direction of the effect in a cG×E model may differ according to the positive and negative environmental background of the population. (2) There is a predictor-intersection problem such that when measuring one type of maltreatment in a person, other kinds of maltreatment often co-occur. Other forms of abuse are implicitly considered in statistical models; therefore, it is difficult to draw conclusions about the effects of timing and the severity of different forms of stressful life events in relation to ASB. (3) There is also an outcome-intersection problem because of the major intersection of ASB and other forms of mental health problems. It is likely that the G×E with MAOA is related to a common unmeasured factor. (4) For the G×E model, in which the effect of the gene on the outcome variable is dependent on other predictor variables, theoretically, hypothesis-driven statistical modelling is needed.
Collapse
Affiliation(s)
- Kent W Nilsson
- Centre for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden.
| | - Cecilia Åslund
- Centre for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Oreland
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Alekseeva PA, Meshalkina DA, Friend AJ, Bao W, Demin KA, Gainetdinov RR, Kalueff AV. Understanding antidepressant discontinuation syndrome (ADS) through preclinical experimental models. Eur J Pharmacol 2018; 829:129-140. [DOI: 10.1016/j.ejphar.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
|
6
|
Golub MS, Hogrefe CE, Sherwood RJ, Turck CW. Fluoxetine Administration in Juvenile Monkeys: Implications for Pharmacotherapy in Children. Front Pediatr 2018; 6:21. [PMID: 29473029 PMCID: PMC5809484 DOI: 10.3389/fped.2018.00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/22/2018] [Indexed: 02/03/2023] Open
Abstract
Fluoxetine therapy has been approved for children with major depressive disorder and obsessive compulsive disorder for over 14 years and has expanded to other childhood behavior disorders. As use increases, more detail on fluoxetine effects during juvenile brain development can help maintain safe and effective use of this therapy. Here, a narrative review is provided of previously published findings from a large nonhuman primate project. Fluoxetine was administered to juvenile male rhesus monkeys for an extended period (2 years) prior to puberty. Compared to controls, treated monkeys showed sleep disruption, facilitated social interaction, greater impulsivity, and impaired sustained attention during treatment. No effects on growth were seen. Metabolomics assays characterized a distinctive response to fluoxetine and demonstrated individual differences that were related to the impulsivity measure. Fluoxetine interactions with monoamine oxidase A polymorphisms that influenced behavior and metabolomics markers were an important, previously unrecognized finding of our studies. After treatment was discontinued, some behavioral effects persisted, but short-term memory and cognitive flexibility testing did not show drug effects. This detailed experimental work can contribute to clinical research and continued safe and effective fluoxetine pharmacotherapy in children.
Collapse
Affiliation(s)
- Mari S Golub
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | | | | |
Collapse
|
7
|
Cognitive performance of juvenile monkeys after chronic fluoxetine treatment. Dev Cogn Neurosci 2017; 26:52-61. [PMID: 28521247 PMCID: PMC5557667 DOI: 10.1016/j.dcn.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/01/2023] Open
Abstract
Potential long term effects on brain development are a concern when drugs are used to treat depression and anxiety in childhood. In this study, male juvenile rhesus monkeys (three-four years of age) were dosed with fluoxetine or vehicle (N=16/group) for two years. Histomorphometric examination of cortical dendritic spines conducted after euthanasia at one year postdosing (N=8/group) suggested a trend toward greater dendritic spine synapse density in prefrontal cortex of the fluoxetine-treated monkeys. During dosing, subjects were trained for automated cognitive testing, and evaluated with a test of sustained attention. After dosing was discontinued, sustained attention, recognition memory and cognitive flexibility were evaluated. Sustained attention was affected by fluoxetine, both during and after dosing, as indexed by omission errors. Response accuracy was not affected by fluoxetine in post-dosing recognition memory and cognitive flexibility tests, but formerly fluoxetine-treated monkeys compared to vehicle controls had more missed trial initiations and choices during testing. Drug treatment also interacted with genetic and environmental variables: MAOA genotype (high- and low transcription rate polymorphisms) and testing location (upper or lower tier of cages). Altered development of top-down cortical regulation of effortful attention may be relevant to this pattern of cognitive test performance after juvenile fluoxetine treatment.
Collapse
|