1
|
Jellinger KA. Behavioral disorders in Parkinson disease: current view. J Neural Transm (Vienna) 2025; 132:169-201. [PMID: 39453553 DOI: 10.1007/s00702-024-02846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Patients with Parkinson disease (PD) frequently experience several behavioral symptoms, such as anxiety, apathy, irritability, agitation, impulsive control and obsessive-compulsive or REM sleep behavior disorders, which can cause severe psychosocial problems and impair quality of life. Occurring in 30-70% of PD patients, these symptoms can manifest at early stages of the disease, sometimes even before the appearance of classic motor symptoms, while others can develop later. Behavioral changes in PD show distinct patterns of brain atrophy, dopaminergic and serotonergic deterioration, altered neuronal connectivity in frontostriatal, corticolimbic, default mode and other networks due to a cascade linking molecular pathologies and deficits in multiple behavior domains. The changes suggest a multi-system neurodegenerative process in the context of a specific α-synucleinopathy inducing a variety of biochemical and functional changes, the neurobiological basis and clinical relevance of which await further elucidation. This paper is intended to review the recent literature with focus on the main behavioral disturbances in PD patients, their epidemiology, clinical features, risk factors, animal models, neuroimaging findings, pathophysiological backgrounds, and treatment options of these deleterious lesions.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
2
|
Dubljević O, Pavković Ž, Srbovan M, Potrebić M, Stanojlović M, Pešić V. Attention-deficit/hyperactivity disorder-related psychomotor activity and altered neuronal activity in the medial prefrontal cortex and striatum in the A53T mouse model of Parkinson's disease and other synucleinopathies: Findings from an "endophenotype" approach. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111273. [PMID: 39870135 DOI: 10.1016/j.pnpbp.2025.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is associated with an increased risk of Parkinson's disease (PD) and other synucleinopathies later in life. The severity of the ADHD phenotype may play a significant role in this association. There is no indication that any of the existing animal models can unify these disorders. Using the Open Field Test, amphetamine-challenge test, Western blot and immunohistochemical analysis of neuronal activity markers (c-Fos, FosB and ΔFosB) we performed a deliberate neurobehavioral characterization of 6-month-old hemizygous A53T carriers (A53T+) of the JAX006823 strain, evaluating the utility of this transgenic mouse model of PD and other synucleinopathies in ADHD/PD continuum research. Adhering to the "endophenotype" approach, non-transgenic littermates (A53T-) and C57BL/6J mice (used to maintain the colony) were examined with A53T+ mice, to differentiate between biomarkers of transgenicity and endophenotypic traits related to the genetic background of the strain. Obtained results revealed that increased behavioral and acute striatal response to novelty, increased basal neuronal activity of the ventromedial prefrontal cortex and rate-dependent calming effect of amphetamine were endophenotypic characteristics of the strain. Increased acute response of the medial prefrontal cortex to novelty and chronic increase in neuronal activity of the striatum appeared as the mark of transgenicity. To the best of our knowledge, this is the first study to indicate external validity of a transgenic mouse model of PD and other synucleinopathies with the neurobehavioral pathology associated with ADHD, hinting at its potential in preclinical research of ADHD/PD continuum. The full capacity of the model remains to be explored.
Collapse
Affiliation(s)
- Olga Dubljević
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Pavković
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Srbovan
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Potrebić
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miloš Stanojlović
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia; Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Vesna Pešić
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Zhang J, Chen ZK, Triatin RD, Snieder H, Thio CHL, Hartman CA. Mediating pathways between attention deficit hyperactivity disorder and type 2 diabetes mellitus: evidence from a two-step and multivariable Mendelian randomization study. Epidemiol Psychiatr Sci 2024; 33:e54. [PMID: 39465621 PMCID: PMC11561680 DOI: 10.1017/s2045796024000593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/20/2024] [Accepted: 07/14/2024] [Indexed: 10/29/2024] Open
Abstract
AIMS Type 2 diabetes (T2D) is a global health burden, more prevalent among individuals with attention deficit hyperactivity disorder (ADHD) compared to the general population. To extend the knowledge base on how ADHD links to T2D, this study aimed to estimate causal effects of ADHD on T2D and to explore mediating pathways. METHODS We applied a two-step, two-sample Mendelian randomization (MR) design, using single nucleotide polymorphisms to genetically predict ADHD and a range of potential mediators. First, a wide range of univariable MR methods was used to investigate associations between genetically predicted ADHD and T2D, and between ADHD and the purported mediators: body mass index (BMI), childhood obesity, childhood BMI, sedentary behaviour (daily hours of TV watching), blood pressure (systolic blood pressure, diastolic blood pressure), C-reactive protein and educational attainment (EA). A mixture-of-experts method was then applied to select the MR method most likely to return a reliable estimate. We used estimates derived from multivariable MR to estimate indirect effects of ADHD on T2D through mediators. RESULTS Genetically predicted ADHD liability associated with 10% higher odds of T2D (OR: 1.10; 95% CI: 1.02, 1.18). From nine purported mediators studied, three showed significant individual mediation effects: EA (39.44% mediation; 95% CI: 29.00%, 49.73%), BMI (44.23% mediation; 95% CI: 34.34%, 52.03%) and TV watching (44.10% mediation; 95% CI: 30.76%, 57.80%). The combination of BMI and EA explained the largest mediating effect (53.31%, 95% CI: -1.99%, 110.38%) of the ADHD-T2D association. CONCLUSIONS These findings suggest a potentially causal, positive relationship between ADHD liability and T2D, with mediation through higher BMI, more TV watching and lower EA. Intervention on these factors may thus have beneficial effects on T2D risk in individuals with ADHD.
Collapse
Affiliation(s)
- J Zhang
- Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Division of Communicable Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Z K Chen
- Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R D Triatin
- Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Faculty of Medicine, Department of Biomedical Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - H Snieder
- Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C H L Thio
- Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, University of Utrecht, Utrecht, The Netherlands
| | - C A Hartman
- Interdisciplinary Centre Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Becker S, Chowdhury M, Tavilsup P, Seitz D, Callahan BL. Risk of neurodegenerative disease or dementia in adults with attention-deficit/hyperactivity disorder: a systematic review. Front Psychiatry 2023; 14:1158546. [PMID: 37663597 PMCID: PMC10469775 DOI: 10.3389/fpsyt.2023.1158546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose of review Several psychiatric disorders have been associated with an increased risk of developing a neurodegenerative disease and/or dementia. Attention-deficit/hyperactivity disorder (ADHD), a neurodevelopmental disorder, has been understudied in relation to dementia risk. We summarized existing literature investigating the risk of incident neurodegenerative disease or dementia associated with ADHD. Recent findings We searched five databases for cohort, case-control, and clinical trial studies investigating associations between ADHD and neurodegenerative diseases/dementia in May 2023. Study characteristics were extracted by two independent raters, and risk of bias was assessed using the Newcastle Ottawa Scale. Search terms yielded 2,137 articles, and seven studies (five cohort and two case-control studies) ultimately met inclusion criteria. Studies examined the following types of neurodegeneration: all-cause dementia, Alzheimer's disease, Parkinson's and Lewy body diseases, vascular dementia, and mild cognitive impairment. Heterogeneity in study methodology, particularly covariates used in analyses and types of ratios for risk reported, prevented a meta-analysis and data were therefore summarized as a narrative synthesis. The majority of studies (4/7) demonstrated an overall low risk of bias. Summary The current literature on risk of developing a neurodegenerative disease in ADHD is limited. Although the studies identified present evidence for a link between ADHD and subsequent development of dementia, the magnitude of the direct effect of ADHD on neurodegeneration is yet to be determined and better empirically designed studies are first needed. Furthermore, the mechanism of how or why ADHD is associated with an increased risk of developing a neurocognitive disorder is still unclear and should be explored in future studies. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022348976, the PROSPERO number is CRD42022348976.
Collapse
Affiliation(s)
- Sara Becker
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mohammad Chowdhury
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pattara Tavilsup
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dallas Seitz
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brandy L. Callahan
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Riglin L, Stergiakouli E. Mendelian randomisation studies of Attention Deficit Hyperactivity Disorder. JCPP ADVANCES 2022; 2:e12117. [PMID: 37431426 PMCID: PMC10242846 DOI: 10.1002/jcv2.12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Observational studies have found Attention Deficit Hyperactivity Disorder (ADHD) to be associated with an increased risk of adverse outcomes as well as with early risk factors; however it is not clear whether these associations reflect causal effects. Alternatives to traditional observational studies are needed to investigate causality: one such design is Mendelian randomization (MR), which uses genetic variants as instrumental variables for the exposure. Methods In this review we summarise findings from approximately 50 studies using MR to examine potentially causal associations with ADHD as either an exposure or outcome. Results To-date, few MR ADHD studies have investigated causal evidence with other neurodevelopmental, mental health and neurodegenerative conditions but those that have suggest a complex relationship with autism, some evidence of a causal effect on depression and limited evidence of a causal effect on neurodegenerative conditions. For substance use, MR studies provide evidence consistent with a causal effect of ADHD on smoking initiation, but findings for other smoking behaviours and cannabis use are less consistent. Studies of physical health suggest bidirectional causal effects with higher body mass index, with stronger effects for childhood obesity, as well as some evidence of causal effects on coronary artery disease and stroke in adults and limited evidence of causal effects on other physical health problems or sleep. Studies suggest bidirectional relationships between ADHD and socio-economic markers and provide some evidence that low birthweight may be a causal risk factor for ADHD, while bidirectional evidence has been found for some environmental factors. Finally, there is emerging evidence of bidirectional causal links between ADHD genetic liability and biological markers of human metabolism and inflammation. Conclusions While MR has advantages over traditional observational designs in addressing causality, we discuss limitations of current ADHD studies and future directions, including the need for larger genome-wide association studies (and using samples of different ancestries), and for triangulation with different methods.
Collapse
Affiliation(s)
- Lucy Riglin
- Division of Psychological Medicine and Clinical Neurosciences and MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Wolfson Centre for Young People's Mental HealthCardiffUK
| | - Evie Stergiakouli
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|
6
|
Kittel-Schneider S, Arteaga-Henriquez G, Vasquez AA, Asherson P, Banaschewski T, Brikell I, Buitelaar J, Cormand B, Faraone SV, Freitag CM, Ginsberg Y, Haavik J, Hartman CA, Kuntsi J, Larsson H, Matura S, McNeill RV, Ramos-Quiroga JA, Ribases M, Romanos M, Vainieri I, Franke B, Reif A. Non-mental diseases associated with ADHD across the lifespan: Fidgety Philipp and Pippi Longstocking at risk of multimorbidity? Neurosci Biobehav Rev 2021; 132:1157-1180. [PMID: 34757108 DOI: 10.1016/j.neubiorev.2021.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
Several non-mental diseases seem to be associated with an increased risk of ADHD and ADHD seems to be associated with increased risk for non-mental diseases. The underlying trajectories leading to such brain-body co-occurrences are often unclear - are there direct causal relationships from one disorder to the other, or does the sharing of genetic and/or environmental risk factors lead to their occurring together more frequently or both? Our goal with this narrative review was to provide a conceptual synthesis of the associations between ADHD and non-mental disease across the lifespan. We discuss potential shared pathologic mechanisms, genetic background and treatments in co-occurring diseases. For those co-occurrences for which published studies with sufficient sample sizes exist, meta-analyses have been published by others and we discuss those in detail. We conclude that non-mental diseases are common in ADHD and vice versa and add to the disease burden of the patient across the lifespan. Insufficient attention to such co-occurring conditions may result in missed diagnoses and suboptimal treatment in the affected individuals.
Collapse
Affiliation(s)
- Sarah Kittel-Schneider
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany.
| | - Gara Arteaga-Henriquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandro Arias Vasquez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Phil Asherson
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Isabell Brikell
- National Centre for Register-based Research, Department of Economics and Business Economics Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Aarhus, Denmark; iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen and Aarhus, Denmark; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstraße 50, D-60528 Frankfurt am Main, Germany
| | - Ylva Ginsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Norra Stationsgatan 69, SE-113 64 Stockholm, Sweden
| | - Jan Haavik
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Postboks 1400, 5021 Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Jonna Kuntsi
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden; Örebro University, School of Medical Sciences, Campus USÖ, S-701 82 Örebro, Sweden
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| | - Rhiannon V McNeill
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribases
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | - Marcel Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - Isabella Vainieri
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Wu PF, Lu H, Zhou X, Liang X, Li R, Zhang W, Li D, Xia K. Assessment of causal effects of physical activity on neurodegenerative diseases: A Mendelian randomization study. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:454-461. [PMID: 33515719 PMCID: PMC8343066 DOI: 10.1016/j.jshs.2021.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/13/2020] [Accepted: 12/17/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Physical activity has been hypothesized to play a protective role in neurodegenerative diseases. However, effect estimates previously derived from observational studies were prone to confounding or reverse causation. METHODS We performed a two-sample Mendelian randomization (MR) analysis to explore the causal association of accelerometer-measured physical activity with 3 common neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We selected genetic instrumental variants reaching genome-wide significance (p < 5 × 10-8) from 2 largest meta-analyses of about 91,100 UK Biobank participants. Summary statistics for AD, PD, and ALS were retrieved from the up-to-date studies in European ancestry led by the international consortia. The random-effect, inverse-variance weighted MR was employed as the primary method, while MR pleiotropy residual sum and outlier (MR-PRESSO), weighted median, and MR-Egger were implemented as sensitivity tests. All statistical analyses were performed using the R programming language (Version 3.6.1; R Foundation for Statistical Computing, Vienna, Austria). RESULTS Primary MR analysis and replication analysis utilized 5 and 8 instrumental variables, which explained 0.2% and 0.4% variance in physical activity, respectively. In each set, one variant at 17q21 was significantly associated with PD, and MR sensitivity analyses indicated them it as an outlier and source of heterogeneity and pleiotropy. Primary results with the removal of outlier variants suggested odds ratios (ORs) of neurodegenerative diseases per unit increase in objectively measured physical activity were 1.52 for AD (95% confidence interval (95%CI): 0.88-2.63, p = 0.13) and 3.35 for PD (95%CI: 1.32-8.48, p = 0.01), while inconsistent results were shown in the replication set for AD (OR = 1.06, 95%CI: 1.01-1.12, p = 0.02) and PD (OR = 0.99, 95%CI: 0.88-0.12, p = 0.97). Similarly, the beneficial effect of physical activity on ALS (OR = 0.51, 95%CI: 0.29-0.91, p = 0.02) was not confirmed in the replication analysis (OR = 0.96, 95%CI: 0.91-1.02, p = 0.22). CONCLUSION Genetically predicted physical activity was not robustly associated with risk of neurodegenerative disorders. Triangulating evidence across other studies is necessary in order to elucidate whether enhancing physical activity is an effective approach in preventing the onset of AD, PD, or ALS.
Collapse
Affiliation(s)
- Peng-Fei Wu
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; Department of Neurology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02115, USA
| | - Hui Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuchen Liang
- School of Physical Education, Henan University, Kaifeng 475001, China
| | - Ruizhuo Li
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wan Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02115, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02215, USA
| | - Danyang Li
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02215, USA
| | - Kun Xia
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|