1
|
Zhang X, Cheng S, Fu C, Yin G, Wang L, Wu Y, Huo H. Advancements and Challenges in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. NANO-MICRO LETTERS 2024; 17:2. [PMID: 39302512 DOI: 10.1007/s40820-024-01498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024]
Abstract
To address the limitations of contemporary lithium-ion batteries, particularly their low energy density and safety concerns, all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative. Among the various SEs, organic-inorganic composite solid electrolytes (OICSEs) that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications. However, OICSEs still face many challenges in practical applications, such as low ionic conductivity and poor interfacial stability, which severely limit their applications. This review provides a comprehensive overview of recent research advancements in OICSEs. Specifically, the influence of inorganic fillers on the main functional parameters of OICSEs, including ionic conductivity, Li+ transfer number, mechanical strength, electrochemical stability, electronic conductivity, and thermal stability are systematically discussed. The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective. Besides, the classic inorganic filler types, including both inert and active fillers, are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs. Finally, the advanced characterization techniques relevant to OICSEs are summarized, and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Shichao Cheng
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chuankai Fu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Geping Yin
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Yongmin Wu
- State Key Laboratory of Space Power-Sources, 2965 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| | - Hua Huo
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
2
|
Arrieta AA, Calabokis OP, Mendoza JM. Effect of Lithium Salts on the Properties of Cassava Starch Solid Biopolymer Electrolytes. Polymers (Basel) 2023; 15:4150. [PMID: 37896394 PMCID: PMC10610839 DOI: 10.3390/polym15204150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
This study evaluates the effect of lithium salts on the structural, electrochemical, and thermal properties of cassava starch solid biopolymer electrolytes (SBPEs). Films of SBPEs were synthesized using plasticizing agents and lithium salts (LiCl, Li2SO4, and CF3LiSO3) via thermochemical method. The SBPEs with lithium salts exhibited characteristic FTIR bands starch, with slight variations in the vibration oxygen-related functional groups compared to salt-free biopolymer spectra. The RCOH/COC index (short-range crystallinity) was higher in the films synthesized without lithium salt and the lowest value was established in the films synthesized with Li2SO4. Thermal degradation involved dehydration between 40 to 110 °C and molecular decomposition between 245 to 335 °C. Degradation temperatures were close when synthesized with salts but differed in films without lithium salt. DSC revealed two endothermic processes: one around 65 °C linked to crystalline structure changes and the second at approximately 271 °C associated with glucose ring decomposition. The electrochemical behavior of the SBPEs varied with the salts used, resulting in differences in the potential and current of peaks from the redox processes and its conductivity, presenting the lowest value (8.42 × 10-5 S cm-1) in the SBPE films without salt and highest value (9.54 × 10-3 S cm-1) in the films with Li2SO4. It was concluded that the type of lithium salt used in SBPEs synthesis affected their properties. SBPEs with lithium triflate showed higher molecular ordering, thermal stability, and lower redox potentials in electrochemical processes.
Collapse
Affiliation(s)
- Alvaro A. Arrieta
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| | - Oriana Palma Calabokis
- Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogota 111221, Colombia;
| | - Jorge Mario Mendoza
- Department of Mechanical Engineering, University of Córdoba, Monteria 230002, Colombia;
| |
Collapse
|
3
|
Salim SA, Kamoun EA, Evans S, EL-Moslamy SH, El-Fakharany EM, Elmazar MM, Abdel-Aziz AF, Abou-Saleh RH, Salaheldin TA. Mercaptopurine-Loaded Sandwiched Tri-Layered Composed of Electrospun Polycaprolactone/Poly(Methyl Methacrylate) Nanofibrous Scaffolds as Anticancer Carrier with Antimicrobial and Antibiotic Features: Sandwich Configuration Nanofibers, Release Study and in vitro Bioevaluation Tests. Int J Nanomedicine 2021; 16:6937-6955. [PMID: 34703223 PMCID: PMC8525416 DOI: 10.2147/ijn.s332920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND 6-Mercaptopurine (6-MP) is a potential anti-cancer agent which its therapeutic and limitation applicability due to its high toxicity. OBJECTIVE Herein, 6-MP was loaded into tri-layered sandwich nanofibrous scaffold (the top layer composed of poly methyl methacrylate/polycaprolactone (PMMA/PCL), the middle layer was PCL/PMMA/6-MP, and the bottom layer was PCL/PMMA to improve its bioactivity, adjusting the release-sustainability and reduce its toxicity. METHODS Electrospun tri-layered nanofibers composed of PCL/PMMA were utilized as nano-mats for controlling sustained drug release. Four groups of sandwich scaffold configurations were investigated with alteration of (PMMA: PCL) composition. RESULTS The sandwich scaffold composed of 2%PCL/4%PMMA/1%6-MP showed the best miscibility, good homogeneity and produced the smoothest nanofibers and low crystallinity. All fabricated 6-MP-loaded-PCL/PMMA scaffolds exhibited antimicrobial properties on the bacterial and fungal organisms, where the cytotoxicity evaluation proved the safety of scaffolds on normal cells, even at high concentration. Scaffolds provided a sustained-drug release profile that was strongly dependent on (PCL: PMMA). As (PCL: PMMA) decreased, the sustained 6-MP release from PCL/PMMA scaffolds increased. Results established that ~18% and 20% of 6-MP were released after 23h from (4%PCL/4%PMMA/1%6-MP) and (2%PCL/4%PMMA/1%6-MP), respectively, where this release was maintained for more than 20 days. The anti-cancer activity of all fabricated scaffolds was also investigated using different cancerous cell lines (e.g., Caco-2, MDA, and HepG-2) results showed that 6-MP-loaded-nanofibrous mats have an anti-cancer effect, with a high selective index for breast cancer. We observed that viability of a cancer cell was dropped to about 10%, using nanofibers containing 2%PCL/4%PMMA/1%6-MP. CONCLUSION Overall, the PCL: PMMA ratio and sandwich configuration imparts a tight control on long-term release profile and initial burst of 6-MP for anticancer treatment purposes.
Collapse
Affiliation(s)
- Samar A Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo, 11837, Egypt
- Biochemistry Group, Chemistry Dep., Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo, 11837, Egypt
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Stephen Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Shahira H EL-Moslamy
- Bioprocess Development Dep., GEBRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Esmail M El-Fakharany
- Protein Research Dep. GEBRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Mohamed M Elmazar
- Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - A F Abdel-Aziz
- Biochemistry Group, Chemistry Dep., Faculty of Science, Mansoura University, Mansoura, Egypt
| | - R H Abou-Saleh
- Biophysics Group, Dep. of Physics, Faculty of Science, Mansoura University, Mansoura, Egypt
- Nanoscience and Technology Program, Faculty of Advanced Basic Science, Galala University, Suez, Egypt
| | - Taher A Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA
| |
Collapse
|
4
|
Arya A, Sharma AL. Investigation on enhancement of electrical, dielectric and ion transport properties of nanoclay-based blend polymer nanocomposites. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02893-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
|
6
|
Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04203-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan CW, Shen Y. Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. J Am Chem Soc 2017; 139:13779-13785. [DOI: 10.1021/jacs.7b06364] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xue Zhang
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Liu
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shuofeng Zhang
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xin Huang
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Bingqing Xu
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanhua Lin
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ben Xu
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liangliang Li
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ce-Wen Nan
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Shen
- State Key Lab of New Ceramics
and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Improved electrochemical, mechanical and transport properties of novel lithium bisnonafluoro-1-butanesulfonimidate (LiBNFSI) based solid polymer electrolytes for rechargeable lithium ion batteries. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Melad O. Studies on the miscibility and effect of the addition of urea to poly(acrylic acid) and poly(sodium styrene sulfonate) blends by dilute solution viscometry method. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x16040106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Lamlong C, Taweepreda W. Coating of porous PVC-PEG memebrane with crosslinkable XSBR for O2/N2 and CO2/N2 separation. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Jung HR, Lee WJ. Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.10.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Simultaneously enhancing ionic conductivity and mechanical properties of solid polymer electrolytes via a copolymer multi-functional filler. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.08.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. POLYMER 2007. [DOI: 10.1016/j.polymer.2006.12.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|