Romeiro A, Teixeira C, Costa H, Coelho JFJ, Serra AC. Recycling Polyethylene/Polyamide Multilayer Films with Poly(isoprene-
g-Maleic Anhydride) Compatibilizer.
Polymers (Basel) 2024;
16:1079. [PMID:
38674998 PMCID:
PMC11053548 DOI:
10.3390/polym16081079]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Polymers generally form incompatible mixtures that make the process of recycling difficult, especially the mechanical recycling of mixed plastic waste. One of the most commonly used films in the packaging industry is multilayer films, mainly composed of polyethylene (PE) and polyamide (PA). Recycling these materials with such different molecular structures requires the use of compatibilizers to minimize phase separation and obtain more useful recycled materials. In this work, commercial polyisoprene-graft-maleic anhydride (PI-g-MA) was tested as a compatibilizer for a blend of PE and PA derived from the mechanical recycling of PE/PA multilayer films. Different amounts of PI-g-MA were tested, and the films made with 1.5% PI-g-MA showed the best results in terms of mechanical properties and dart impact. The films were also characterized thermally via thermogravimetric analysis (TG) and differential scanning calorimetry (DSC), using Fourier-transform infrared spectroscopy (FTIR), and morphologically using a scanning electron microscope (SEM). Other parameters, such as tearing and perforation, were analyzed.
Collapse