1
|
Razzaq A, Ashraf MU, Barkat K, Mahmood A, Sarfraz RM, Rehman U, Albrahim M, Elboughdiri N, Benguerba Y. Development and characterization of pH-responsive Delonix regia/mucin co-poly (acrylate) hydrogel for controlled drug delivery of metformin HCl. Int J Biol Macromol 2024; 274:132767. [PMID: 38821296 DOI: 10.1016/j.ijbiomac.2024.132767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
This study introduces a pH-responsive hydrogel developed from Delonix regia and mucin co-poly(acrylate) through free radical polymerization to enhance controlled drug delivery systems. Characterization using FTIR, DSC, TGA, SEM, PXRD, and EDX spectroscopy detailed the hydrogel's amorphous and crystalline structures, thermal stability, surface characteristics, and elemental composition. Tested at a pH of 7.4-mimicking intestinal conditions-the hydrogel demonstrated significant swelling, indicating its capability for targeted drug release. With Metformin HCl as a model drug, the hydrogel exhibited a promising sustained release profile, underscoring its potential for oral administration. Safety and biocompatibility were assessed through acute oral toxicity studies in albino rabbits, encompassing biochemical, hematological, and histopathological evaluations. X-ray imaging confirmed the hydrogel's navigability through the gastrointestinal tract, affirming its application in drug delivery. By potentially mitigating gastrointestinal side effects, enhancing patient compliance, and improving therapeutic efficacy, this Delonix regia/mucin co-poly(acrylate) hydrogel represents a step in pharmaceutical sciences, exploring innovative materials and methodologies for drug delivery.
Collapse
Affiliation(s)
- Asma Razzaq
- Faculty of Pharmacy, The University of Lahore, Lahore 54600, Pakistan
| | | | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore 54600, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan
| | | | - Umaira Rehman
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Malik Albrahim
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
2
|
Kolosova OY, Vasil'ev VG, Novikov IA, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 67 Properties and Microstructure of Poly(Vinyl Alcohol) Cryogels Formed in the Presence of Phenol or Bis-Phenols Introduced into the Aqueous Polymeric Solutions Prior to Their Freeze-Thaw Processing. Polymers (Basel) 2024; 16:675. [PMID: 38475358 DOI: 10.3390/polym16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Poly(vinyl alcohol) (PVA) physical cryogels that contained the additives of o-, m-, and p-bis-phenols or phenol were prepared, and their physico-chemical characteristics and macroporous morphology and the solute release dynamics were evaluated. These phenolic additives caused changes in the viscosity of initial PVA solutions before their freeze-thaw processing and facilitated the growth in the rigidity of the resultant cryogels, while their heat endurance decreased. The magnitude of the effects depended on the interposition of phenolic hydroxyls in the molecules of the used additives and was stipulated by their H-bonding with PVA OH-groups. Subsequent rinsing of such "primary" cryogels with pure water led to the lowering of their rigidity. The average size of macropores inside these heterophase gels also depended on the additive type. It was found also that the release of phenolic substances from the additive-containing cryogels occurred via virtually a free diffusion mechanism; therefore, drug delivery systems such as PVA cryogels loaded with either pyrocatechol, resorcinol, hydroquinone, or phenol, upon the in vitro agar diffusion tests, exhibited antibacterial activity typical of these phenols. The promising biomedical potential of the studied nanocomposite gel materials is supposed.
Collapse
Affiliation(s)
- Olga Yu Kolosova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Viktor G Vasil'ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan A Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Street 38, 119991 Moscow, Russia
| | - Elena V Sorokina
- Microbilogy Department, Biology Faculty, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
3
|
Romero-Gilbert S, Castro-García M, Díaz-Chamorro H, Marambio OG, Sánchez J, Martin-Trasancos R, Inostroza M, García-Herrera C, Pizarro GDC. Synthesis, Characterization and Catechol-Based Bioinspired Adhesive Properties in Wet Medium of Poly(2-Hydroxyethyl Methacrylate- co-Acrylamide) Hydrogels. Polymers (Basel) 2024; 16:187. [PMID: 38256986 PMCID: PMC10820396 DOI: 10.3390/polym16020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Hydrogels consist of crosslinked hydrophilic polymers from which their mechanical properties can be modulated for a wide variety of applications. In the last decade, many catechol-based bioinspired adhesives have been developed following the strategy of incorporating catechol moieties into polymeric backbones. In this work, in order to further investigate the adhesive properties of hydrogels and their potential advantages, several hydrogels based on poly(2-hydroxyethyl methacrylate-co-acrylamide) with N'N-methylene-bisacrylamide (MBA), without/with L-3,4-dihydroxyphenylalanine (DOPA) as a catecholic crosslinker, were prepared via free radical copolymerization. 2-Hydroxyethyl methacrylate (HEMA) and acrylamide (AAm) were used as comonomers and MBA and DOPA both as crosslinking agents at 0.1, 0.3, and 0.5 mol.-%, respectively. The polymeric hydrogels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermal analysis and swelling behavior analysis. Subsequently, the mechanical properties of hydrogels were determined. The elastic properties of the hydrogels were quantified using Young's modulus (stress-strain curves). According to the results herein, the hydrogel with a feed monomer ratio of 1:1 at 0.3 mol.-% of MBA and DOPA displayed the highest rigidity and higher failure shear stress (greater adhesive properties). In addition, the fracture lap shear strength of the biomimetic polymeric hydrogel was eight times higher than the initial one (only containing MBA); however at 0.5 mol.-% MBA/DOPA, it was only two times higher. It is understood that when two polymer surfaces are brought into close contact, physical self-bonding (Van der Waals forces) at the interface may occur in an -OH interaction with wet contacting surfaces. The hydrogels with DOPA provided an enhancement in the flexibility compared to unmodified hydrogels, alongside reduced swelling behavior on the biomimetic hydrogels. This approach expands the possible applications of hydrogels as adhesive materials, in wet conditions, within scaffolds that are commonly used as biomaterials in cartilage tissue engineering.
Collapse
Affiliation(s)
- Sebastian Romero-Gilbert
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile; (S.R.-G.); (O.G.M.)
| | - Matías Castro-García
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile; (S.R.-G.); (O.G.M.)
| | - Héctor Díaz-Chamorro
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile; (S.R.-G.); (O.G.M.)
| | - Oscar G. Marambio
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile; (S.R.-G.); (O.G.M.)
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Rudy Martin-Trasancos
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Matías Inostroza
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Bernardo O’Higgins, Santiago 9170022, Chile (C.G.-H.)
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Bernardo O’Higgins, Santiago 9170022, Chile (C.G.-H.)
| | - Guadalupe del C. Pizarro
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile; (S.R.-G.); (O.G.M.)
| |
Collapse
|
4
|
Mucoadhesive Hydrogel Nanoparticles as Smart Biomedical Drug Delivery System. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050825] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogels are widely used materials which have many medical applications. Their ability to absorb aqueous solutions and biological fluids gives them innovative characterizations resulting in increased compatibility with biological activity. In this sense, they are used extensively for encapsulation of several targets such as biomolecules, viruses, bacteria, and mammalian cells. Indeed, many methods have been published which are used in hydrogel formulation and biomedical encapsulations involving several cross-linkers. This system is still rich with the potential of undiscovered features. The physicochemical properties of polymers, distinguished by their interactions with biological systems into mucoadhesive, gastro-adhesive, and stimuli responsive polymers. Hydrogel systems may be assembled as tablets, patches, gels, ointments, and films. Their potential to be co-formulated as nanoparticles extends the limits of their assembly and application. In this review, mucoadhesive nanoparticles and their importance for biomedical applications are highlighted with a focus on mechanisms of overcoming mucosal resistance.
Collapse
|
5
|
A 'degradable' poly(vinyl alcohol) iron oxide nanoparticle hydrogel. Acta Biomater 2017; 58:376-385. [PMID: 28499634 DOI: 10.1016/j.actbio.2017.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
Polymeric materials that contain magnetic nanoparticles are extremely useful in many applications including as multifunctional drug carriers, imaging contrast agents, or scaffold material. There is a need for biomaterials with appropriate chemical, mechanical, and magnetic properties that also have the ability to degrade or dissolve over time so they can be eliminated from the body following use. In this work, we explore the use of iron oxide nanoparticle (IONP) formation in poly(vinyl alcohol) (PVA) as a crosslinking method in conjunction with physical crosslinking achieved using low temperature thermal cycling (LTTC). PVA-IONP hydrogels were fabricated and characterized. IONPs contribute to the crosslinking of the PVA-IONP material, and their subsequent removal reduces crosslinking, and therefore stability, of the material, allowing dissolution to occur. Dissolution studies were performed on PVA-IONP hydrogels and dissolution was compared for films in solutions of varying pH, in the presence of iron chelating agents, and in simulated physiological and tumor conditions in cell culture media. Iron release, mass loss, and mechanical testing data was collected. This work demonstrates the ability of this biomaterial to 'degrade' over time, which may be very advantageous for applications such as drug delivery. This importance of this work extends to other areas such as the use of stimuli-responsive hydrogels. STATEMENT OF SIGNIFICANCE This manuscript explores the stability of an iron oxide nanoparticle (IONP)-containing, physically crosslinked poly(vinyl alcohol) (PVA) hydrogel. The PVA-IONP hydrogel's stability is imparted through crosslinks created through a low temperature thermal cycling process and through the IONPs. Subsequent IONP removal reduces crosslinks so material dissolution can occur, resulting in a 'degradable' and multifunctional biomaterial. PVA-IONP films were fabricated, characterized and evaluated in terms of dissolution in solutions of varying pH and in the presence of chelating agents. Iron release, mass loss, and mechanical testing data demonstrate the ability of the PVA-IONP biomaterial to 'degrade' over time. This degradability has not yet been demonstrated for crosslinked PVA hydrogels. These results are relevant to the development of degradable multifunctional drug carriers, image contrast agents, or magnetic scaffold materials.
Collapse
|
6
|
Baptista JG, Rodrigues SP, Matsushita AF, Vitorino C, Maria TM, Burrows HD, Pais AA, Valente AJ. Does poly(vinyl alcohol) act as an amphiphilic polymer? An interaction study with simvastatin. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Abdeen ZU, Saeed R. Kinetics and mechanism of pH responsive cationic desorption from poly(vinyl alcohol)-borate hydrogel. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x16050011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Saeed R, Abdeen ZU. Kinetics of desorption of KCL from polyvinyl alcohol-borate hydrogel in aqueous-alcoholic solvents at different temperatures. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415110163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Papancea A, Patachia S, Dobritoiu R. Crystal violet dye sorption and transport in/through biobased PVA cryogel membranes. J Appl Polym Sci 2015. [DOI: 10.1002/app.41838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Adina Papancea
- Department of Product Design; Mechatronics and Environment; Transilvania University of Brasov; Brasov 500036 Romania
| | - Silvia Patachia
- Department of Product Design; Mechatronics and Environment; Transilvania University of Brasov; Brasov 500036 Romania
| | - Rodica Dobritoiu
- Department of Product Design; Mechatronics and Environment; Transilvania University of Brasov; Brasov 500036 Romania
| |
Collapse
|
10
|
Dey A, Bera B, Bera R, Chakrabarty D. Influence of diethylene glycol as a porogen in a glyoxal crosslinked polyvinyl alcohol hydrogel. RSC Adv 2014. [DOI: 10.1039/c4ra04742g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Transport properties of ephedrine hydrochloride through poly(vinyl alcohol) matrices—a simple method for enantiomeric differentiation. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3227-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Identification of diffusive transport properties of poly(vinyl alcohol) hydrogels from reservoir test. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4533-8. [PMID: 24094156 DOI: 10.1016/j.msec.2013.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/25/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022]
Abstract
In this paper the identification of diffusion coefficient, retardation factor and surface distribution coefficient for selected salts in poly(vinyl alcohol) hydrogels is performed. The identification of the transport parameters is based on the previously developed inverse problem technique using experimental data from the reservoir test and the solution of the diffusive transport equation with linear equilibrium sorption. The estimated values of diffusion coefficient are: for physiological fluid (6.30±0.10)×10(-10) m(2)/s, for 1 M NaCl (6.42±0.39)×10(-10) m(2)/s, and for 1 M KCl (7.94±0.38)×10(-10) m(2)/s. The retardation factor for all tested materials and salts is equal or close to one. The average value of the effective surface distribution coefficient is equal to 0.5.
Collapse
|
13
|
Valente AJ, Cruz SM, Murtinho DM, Miguel MG, Muniz EC. DNA–poly(vinyl alcohol) gel matrices: Release properties are strongly dependent on electrolytes and cationic surfactants. Colloids Surf B Biointerfaces 2013; 101:111-7. [DOI: 10.1016/j.colsurfb.2012.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/09/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
|
14
|
Padavan DT, Hamilton AM, Millon LE, Boughner DR, Wan W. Synthesis, characterization and in vitro cell compatibility study of a poly(amic acid) graft/cross-linked poly(vinyl alcohol) hydrogel. Acta Biomater 2011; 7:258-67. [PMID: 20688197 DOI: 10.1016/j.actbio.2010.07.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/06/2010] [Accepted: 07/27/2010] [Indexed: 11/16/2022]
Abstract
Although physically cross-linked poly(vinyl alcohol) (PVA) hydrogels have tunable mechanical properties to match that of soft tissues, such as vascular tissue, their hydrophilic nature is not conducive to cell adhesion and spreading. For applications such as small diameter vascular grafts for coronary bypass both mechanical matching and hemocompatibility are important. Poly(amic acid) (PAA), derived from ethylene diamine tetraacetic dianhydride, is a cell-compatible polymer. It was grafted/cross-linked onto physically cross-linked PVA to provide cell compatibility. Functionalization was achieved via a one-step esterification reaction using 1,3-dicyclohexylcarbodiimide as the coupling agent and 4-dimethylaminopyridine as the catalyst. The success of the grafting reaction was verified using Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. The mechanical properties of the starting PVA hydrogel were largely preserved after the grafting reaction within the physiological strain range of vascular tissue. In vitro cell culture studies using primary porcine endothelial cells confirmed cell compatibility of the PAA graft PVA hydrogel, making it an attractive candidate for small diameter vascular graft development.
Collapse
|
15
|
Papancea A, Valente AJM, Patachia S. PVA cryogel membranes as a promising tool for the retention and separation of metal ions from aqueous solutions. J Appl Polym Sci 2010. [DOI: 10.1002/app.32514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Papancea A, Valente AJM, Patachia S. Diffusion and sorption studies of dyes through PVA cryogel membranes. J Appl Polym Sci 2010. [DOI: 10.1002/app.30983] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Papancea A, Valente AJM, Patachia S, Miguel MG, Lindman B. PVA-DNA cryogel membranes: characterization, swelling, and transport studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:273-279. [PMID: 18052399 DOI: 10.1021/la702639d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Double-stranded (ds) DNA from salmon testes has been incorporated into PVA hydrogels obtained by a technique of repeated freezing and thawing. The cryogels obtained are free of potential toxic species like chemical cross-linkers, and consequently, they can be used in pharmaceutical or medical applications. These cryogels show a good mechanical resistance and a white and opaque appearance caused by a heterogeneous porous structure. Encapsulated DNA molecules can be in a compacted or an extended conformation in the PVA matrix and can be controlled by tailoring the degree of crystallinity of the PVA network; this is supported by fluorescence microscopy and UV and FTIR spectroscopic studies. The two forms of encapsulated DNA were observed for different types of matrixes: an extended one in a more crystalline network and a globular one in a more amorphous one. Different associations of base pairs have also been observed. PVA cryogel crystallinity could be tailored by the cryogel contact with different salt solutions. Cryogel surface (scanning electron microscopy) and bulk morphology (porosimetry), swelling, DNA retention, and delivery kinetics have also been studied. All these investigations clearly show strong interactions between PVA and DNA.
Collapse
Affiliation(s)
- Adina Papancea
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal, Department of Chemistry, Transilvania University of Brasov, 29 Eroilor Str., Brasov, Romania
| | | | | | | | | |
Collapse
|