1
|
Casarrubios L, Cicuéndez M, Polo-Montalvo A, Feito MJ, Martínez-Del-Pozo Á, Arcos D, Duarte IF, Portolés MT. Metabolomic characterization of MC3T3-E1pre-osteoblast differentiation induced by ipriflavone-loaded mesoporous nanospheres. BIOMATERIALS ADVANCES 2025; 166:214085. [PMID: 39490191 DOI: 10.1016/j.bioadv.2024.214085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
This study reports on the metabolic changes accompanying the differentiation of MC3T3-E1 osteoprogenitor cells induced by mesoporous bioactive glass nanospheres (nMBG) loaded with ipriflavone (nMBG-IP). Ipriflavone (IP) is a synthetic isoflavone known for inhibiting bone resorption, maintaining bone density, and preventing osteoporosis. Delivering IP intracellularly is a promising strategy to modulate bone remodeling at significantly lower doses compared to free drug administration. Our results demonstrate that nMBG are efficiently internalized by pre-osteoblasts and, when loaded with IP, induce their differentiation. This differentiation process is accompanied by pronounced metabolic alterations, as monitored by NMR analysis of medium supernatants and cell extracts (exo- and endo-metabolomics, respectively). The main effects include an early-stage intensification of glycolysis and changes in several metabolic pathways, such as nucleobase metabolism, osmoregulatory and antioxidant pathways, and lipid metabolism. Notably, the metabolic impacts of nMBG-IP and free IP were very similar, whereas nMBG alone induced only mild changes in the intracellular metabolic profile without affecting the cells' consumption/secretion patterns or lipid composition. This finding indicates that the observed effects are primarily related to IP-induced differentiation and that nMBG nanospheres serve as convenient carriers with both efficient internalization and minimal metabolic impact. Furthermore, the observed link between pre-osteoblast differentiation and metabolism underscores the potential of utilizing metabolites and metabolic reprogramming as strategies to modulate the osteogenic process, for instance, in the context of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Mónica Cicuéndez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Polo-Montalvo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain.
| |
Collapse
|
2
|
Samadi M, Jelvehgari M, Salatin S. Development and optimization of guaifenesin sustained release mini-tablets for adult and geriatric patients. Ther Deliv 2024; 15:859-869. [PMID: 39360950 PMCID: PMC11497993 DOI: 10.1080/20415990.2024.2406216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Aim: The main aim of this study was to formulate and optimize sustained release mini-tablets of guaifenesin.Materials & methods: Guaifenesin granules were successfully prepared using different blend ratios of carnauba wax to drug by melt granulation method. The properties of granules were further modified by combining them with ethyl cellulose. The obtained granules were then mixed and compressed into mini-tablets using a tablet press machine. The resulting mini-tablets were characterized in terms of weight, thickness, hardness, drug content and in vitro drug release.Results: Mini-tablets with 1:6 carnauba wax to drug ratio showed superior physicochemical characteristics, releasing about 100.03% of guaifenesin over 8 h. Ethyl cellulose offers a great potential to accurately control drug release from mini-tablets.Conclusion: The prepared mini-tablets seem to be a very promising alternative to guaifenesin conventional formulations and can be used in adults and elderly people.
Collapse
Affiliation(s)
- Mahshid Samadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Casarrubios L, Gómez-Cerezo N, Feito MJ, Vallet-Regí M, Arcos D, Portolés MT. Incorporation and effects of mesoporous SiO 2-CaO nanospheres loaded with ipriflavone on osteoblast/osteoclast cocultures. Eur J Pharm Biopharm 2018; 133:258-268. [PMID: 30385420 DOI: 10.1016/j.ejpb.2018.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 10/28/2018] [Indexed: 12/19/2022]
Abstract
Mesoporous nanospheres in the system SiO2-CaO (NanoMBGs) with a hollow core surrounded by a radial arrangement of mesopores were characterized, labeled with FITC (FITC-NanoMBGs) and loaded with ipriflavone (NanoMBG-IPs) in order to evaluate their incorporation and their effects on both osteoblasts and osteoclasts simultaneously and maintaining the communication with each other in coculture. The influence of these nanospheres on macrophage polarization towards pro-inflammatory M1 or reparative M2 phenotypes was also evaluated in basal and stimulated conditions through the expression of CD80 (as M1 marker) and CD206 (as M2 marker) by flow cytometry and confocal microscopy. NanoMBGs did not induce the macrophage polarization towards the M1 pro-inflammatory phenotype, favoring the M2 reparative phenotype and increasing the macrophage response capability against stimuli as LPS and IL-4. NanoMBG-IPs induced a significant decrease of osteoclast proliferation and resorption activity after 7 days in coculture with osteoblasts, without affecting osteoblast proliferation and viability. Drug release test demonstrated that only a fraction of the payload is released by diffusion, whereas the rest of the drug remains within the hollow core after 7 days, thus ensuring the local long-term pharmacological treatment beyond the initial fast IP release. All these data ensure an appropriate immune response to these nanospheres and the potential application of NanoMBG-IPs as local drug delivery system in osteoporotic patients.
Collapse
Affiliation(s)
- Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Natividad Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
5
|
Anirudhan T, Nair AS, S.S G. The role of biopolymer matrix films derived from carboxymethyl cellulose, sodium alginate and polyvinyl alcohol on the sustained transdermal release of diltiazem. Int J Biol Macromol 2018; 107:779-789. [DOI: 10.1016/j.ijbiomac.2017.09.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 11/26/2022]
|