1
|
Medina-Castillo AL, Ruzic L, Nidetzky B, Bolivar JM. Hydrophilic Nonwoven Nanofiber Membranes as Nanostructured Supports for Enzyme Immobilization. ACS APPLIED POLYMER MATERIALS 2022; 4:6054-6066. [PMID: 35991305 PMCID: PMC9379912 DOI: 10.1021/acsapm.2c00863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The high porosity, interconnected pore structure, and high surface area-to-volume ratio make the hydrophilic nonwoven nanofiber membranes (NV-NF-Ms) promising nanostructured supports for enzyme immobilization in different biotechnological applications. In this work, NV-NF-Ms with excellent mechanical and chemical properties were designed and fabricated by electrospinning in one step without using additives or complicated crosslinking processes after electrospinning. To do so, two types of ultrahigh-molecular-weight linear copolymers with very different mechanical properties were used. Methyl methacrylate-co-hydroxyethyl methacrylate (p(MMA)-co-p(HEMA)) and methyl acrylate-co-hydroxyethyl acrylate (p(MA)-co-p(HEA)) were designed and synthesized by reverse atom transfer radical polymerization (reverse-ATRP) and copper-mediated living radical polymerization (Cu0-MC-LRP), respectively. The copolymers were characterized by nuclear magnetic resonance (1H-NMR) spectroscopy and by triple detection gel permeation chromatography (GPC). The polarity, topology, and molecular weight of the copolymers were perfectly adjusted. The polymeric blend formed by (MMA)1002-co-(HEMA)1002 (M w = 230,855 ± 7418 Da; M n = 115,748 ± 35,567 Da; PDI = 2.00) and (MA)11709-co-(HEA)7806 (M w = 1.972 × 106 ± 33,729 Da; M n = 1.395 × 106 ± 35,019 Da; PDI = 1.41) was used to manufacture (without additives or chemical crosslinking processes) hydroxylated nonwoven nanofiber membranes (NV-NF-Ms-OH; 300 nm in fiber diameter) with excellent mechanical and chemical properties. The morphology of NV-NF-Ms-OH was studied by scanning electron microscopy (SEM). The suitability for enzyme binding was proven by designing a palette of different surface functionalization to enable both reversible and irreversible enzyme immobilization. NV-NF-Ms-OH were successfully functionalized with vinyl sulfone (281 ± 20 μmol/g), carboxyl (560 ± 50 μmol/g), and amine groups (281 ± 20 μmol/g) and applied for the immobilization of two enzymes of biotechnological interest. Galactose oxidase was immobilized on vinyl sulfone-activated materials and carboxyl-activated materials, while laccase was immobilized onto amine-activated materials. These preliminary results are a promising basis for the application of nonwoven membranes in enzyme technology.
Collapse
Affiliation(s)
- Antonio L. Medina-Castillo
- Nanomateriales
y Polimeros S.L. (NanoMyP®), Spin-Off Company of the University
of Granada, BIC Building,
Avd. Innovacion 1, E-18016 Granada, Spain
- Department
of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Lucija Ruzic
- Nanomateriales
y Polimeros S.L. (NanoMyP®), Spin-Off Company of the University
of Granada, BIC Building,
Avd. Innovacion 1, E-18016 Granada, Spain
- FQPIMA
Group, Chemical and Materials Engineering Department, Faculty of Chemical
Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria
| | - Juan M. Bolivar
- FQPIMA
Group, Chemical and Materials Engineering Department, Faculty of Chemical
Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Park JE, Kang HS, Koo M, Park C. Autonomous Surface Reconciliation of a Liquid-Metal Conductor Micropatterned on a Deformable Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002178. [PMID: 32743939 DOI: 10.1002/adma.202002178] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/01/2020] [Indexed: 05/15/2023]
Abstract
Spreading liquid droplets on solid surfaces is a core topic in physical chemistry with significant technological implications. Liquid metals, which are eutectic alloys of constituent metal atoms with low melting temperatures, are practically useful, but difficult to spread on solid surfaces because of their high surface tension. This makes it difficult to use liquid metals as deformable on-board microcircuitry electrodes, despite their intrinsic deformability. In this study, it is discovered that eutectic gallium-indium (EGaIn) can be spread onto the surface of chemically cross-linked hydrogels consisting of aliphatic alkyl chains with numerous hydroxyl groups (OH), thus facilitating the development of directly micropatterned EGaIn electrodes. More importantly, EGaIn patterned on a hydrogel autonomously reconciliates its surface to form a firm hydrogel interface upon mechanical deformation of the hydrogel. This autonomous surface reconciliation of EGaIn on hydrogels allows researchers to reap the benefits of chemically modified hydrogels, such as reversible stretching, self-healing, and water-swelling capability, thereby facilitating the fabrication of superstretchable, self-healable, and water-swellable liquid-metal electrodes with very high conductance tolerance upon deformation. Such electrodes are suitable for a variety of deformable microelectronic applications.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Han Sol Kang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Koo
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Karatza A, Klonos P, Pispas S, Kyritsis A. Glass transition and molecular dynamics in PHPMA-b-POEGMA block copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Bhat A, Smith B, Dinu CZ, Guiseppi-Elie A. Molecular engineering of poly(HEMA-co-PEGMA)-based hydrogels: Role of minor AEMA and DMAEMA inclusion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:89-100. [DOI: 10.1016/j.msec.2018.12.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 11/29/2022]
|
5
|
Dielectric properties of nanocomposites based on cellulose nanocrystals (CNCs) and poly(styrene-co-2-ethyl hexylacrylate) copolymer. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96:282-301. [DOI: 10.1016/j.ijbiomac.2016.11.095] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023]
|
7
|
Lee MJ, Kim TH, Sung AY. Characterization and Application for Hydrogel Lens Material of Acrylate Monomers Containing Hydroxyl Group. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2016. [DOI: 10.5012/jkcs.2016.60.3.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Investigation and optimization of formulation factors of a hydrogel network based on kappa carrageenan–pregelatinized starch blend using an experimental design. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
|