1
|
Hernández Velázquez JD, Alas SJ, Pérez E, Goicochea AG. Universal scaling of the osmotic pressure for dense, quasi-two-dimensionally confined polymer melts reveals transitions between fractal dimensions. J Chem Phys 2024; 160:084907. [PMID: 38415832 DOI: 10.1063/5.0185634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
A scaling law for the osmotic pressure of quasi-two-dimensional polymer melts as a function of concentration is obtained, which shows fractal characteristics. Structural properties such as the chains' contour length and their inner-monomer pair distribution function display fractal scaling properties as well. These predictions are confirmed with mesoscale numerical simulations. The chains are swollen and highly entangled, yet Flory's exponent is always ν = 1/2. The melt can be considered a fluid of "blobs" whose size becomes renormalized in terms of the contour's length while the fractal dimension df increases monotonically between 5/4 and 2, as the monomer concentration is increased. The semidilute scaling of the pressure is recovered when df = 1. Our results agree with recent experiments and with numerical reports on quasi-2d melts. This work provides a new paradigm to study and interpret thermodynamic and structural data in low-dimensional polymer melts, namely as fractal macromolecular objects.
Collapse
Affiliation(s)
- J D Hernández Velázquez
- Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Ecatepec, División de Ingeniería Química y Bioquímica, 55210 Estado de México, Mexico
| | - S J Alas
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, 05300 Ciudad de México, Mexico
| | - E Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, 78000 San Luis Potosí, Mexico
| | - A Gama Goicochea
- Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Ecatepec, División de Ingeniería Química y Bioquímica, 55210 Estado de México, Mexico
| |
Collapse
|
2
|
Chaschin IS, Sinolits MA, Badun GA, Chernysheva MG, Anuchina NM, Krasheninnikov SV, Khugaev GA, Petlenko AA, Britikov DV, Zubko AV, Kurilov AD, Dreger EI, Bakuleva NP. Chitosan/hyaluronic acid polyanion bilayer applied from carbon acid as an advanced coating with intelligent antimicrobial properties for improved biological prosthetic heart valves. Int J Biol Macromol 2022; 222:2761-2774. [DOI: 10.1016/j.ijbiomac.2022.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
3
|
Zhang J, Liu Z, Zhou S, Teng Y, Zhang X, Li J. Novel Span-PEG Multifunctional Ultrasound Contrast Agent Based on CNTs as a Magnetic Targeting Factor and a Drug Carrier. ACS OMEGA 2020; 5:31525-31534. [PMID: 33344804 PMCID: PMC7745219 DOI: 10.1021/acsomega.0c03325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/15/2023]
Abstract
Based on the targeting of ferroferric oxide (Fe3O4) and the drug-loading property of carbon nanotubes (CNTs), a novel Span-PEG-composited Fe3O4-CNTs-DOX multifunctional ultrasound contrast agent was designed and applied to tumor lesions. In situ liquid phase synthesis was employed to prepare the Fe3O4-CNTs magnetic targeting complex, and the physical method was used to obtain the Fe3O4-CNTs-DOX complex by loading doxorubicin (DOX) onto Fe3O4-CNTs. The targeted drug-loading complex Fe3O4-CNTs-DOX was combined with the membrane material of Span-PEG by the acoustic vibration cavitation method. The maximum tolerance for Span-PEG-composited Fe3O4-CNTs-DOX microbubbles was 450 times higher, which has good safety. The loading rate of DOX in the obtained composite microbubbles was 17.02%. The proliferation inhibition rate of Span-PEG-composited Fe3O4-CNTs-DOX microbubbles on liver cancer SMMC-7721 cells reached 48.3%. Span-PEG-composited Fe3O4-CNTs-DOX microbubbles could significantly enhance ultrasonic imaging and enrich at a specific location under an external magnetic field, and the extended imaging time could ensure the effective observation and diagnosis of lesions.
Collapse
Affiliation(s)
- Jie Zhang
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Zhongtao Liu
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Shujing Zhou
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Yang Teng
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Xiangyu Zhang
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Jinjing Li
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| |
Collapse
|
4
|
Klinov DV, Protopopova AD, Andrianov DS, Litvinov RI, Weisel JW. An Improved Substrate for Superior Imaging of Individual Biomacromolecules with Atomic Force Microscopy. Colloids Surf B Biointerfaces 2020; 196:111321. [DOI: 10.1016/j.colsurfb.2020.111321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
|
5
|
Kizas O, Moiseev S, Chaschin I, Godovikov I, Dolgushin F, Nikolaev A, Nikitin L, Khokhlov A. Phosphonium salts derived from α-ferrocenylvinyl cation in situ generated in sc -CO 2 from ethynylferrocene by Nafion film. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Chaschin IS, Bakuleva NP, Grigoriev TE, Krasheninnikov SV, Nikitin LN. Collagen tissue treated with chitosan solution in H 2 O/CO 2 mixtures: Influence of clathrates hydrates on the structure and mechanical properties. J Mech Behav Biomed Mater 2017; 67:10-18. [DOI: 10.1016/j.jmbbm.2016.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
|
7
|
Pigaleva MA, Portnov IV, Rudov AA, Blagodatskikh IV, Grigoriev TE, Gallyamov MO, Potemkin II. Stabilization of Chitosan Aggregates at the Nanoscale in Solutions in Carbonic Acid. Macromolecules 2014. [DOI: 10.1021/ma501169c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marina A. Pigaleva
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, GSP-1, Moscow 119991, Russian Federation
| | - Ivan V. Portnov
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, GSP-1, Moscow 119991, Russian Federation
| | - Andrey A. Rudov
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, GSP-1, Moscow 119991, Russian Federation
- DWI - Leibniz
Institute for Interactive Materials, Forckenbeckstraße 50, Aachen 52056, Germany
| | - Inesa V. Blagodatskikh
- Nesmeyanov Institute
of Organoelement Compounds RAS, Moscow, Vavilova 28,
GSP-1, Moscow 119991, Russian Federation
| | - Timofei E. Grigoriev
- Nesmeyanov Institute
of Organoelement Compounds RAS, Moscow, Vavilova 28,
GSP-1, Moscow 119991, Russian Federation
| | - Marat O. Gallyamov
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, GSP-1, Moscow 119991, Russian Federation
- Nesmeyanov Institute
of Organoelement Compounds RAS, Moscow, Vavilova 28,
GSP-1, Moscow 119991, Russian Federation
| | - Igor I. Potemkin
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, GSP-1, Moscow 119991, Russian Federation
- DWI - Leibniz
Institute for Interactive Materials, Forckenbeckstraße 50, Aachen 52056, Germany
| |
Collapse
|
8
|
Gallyamov MO, Chaschin IS, Khokhlova MA, Grigorev TE, Bakuleva NP, Lyutova IG, Kondratenko JE, Badun GA, Chernysheva MG, Khokhlov AR. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:127-40. [DOI: 10.1016/j.msec.2014.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/16/2013] [Accepted: 01/05/2014] [Indexed: 02/07/2023]
|
9
|
Ivanov VA, Rodionova AS, Martemyanova JA, Stukan MR, Müller M, Paul W, Binder K. Wall-induced orientational order in athermal semidilute solutions of semiflexible polymers: Monte Carlo simulations of a lattice model. J Chem Phys 2013; 138:234903. [DOI: 10.1063/1.4810745] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Chitosan nanostructures deposited from solutions in carbonic acid on a model substrate as resolved by AFM. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2673-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|