1
|
Bakirdogen G, Sahkulubey Kahveci EL, Kahveci MU. Fast and efficient preparation of three-arm star block copolymers via tetrazine ligation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Zhang X, Dai Y, Dai G, Deng C. Advances in PEG-based ABC terpolymers and their applications. RSC Adv 2020; 10:21602-21614. [PMID: 35518773 PMCID: PMC9054495 DOI: 10.1039/d0ra03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
ABC terpolymers are a class of very important polymers because of their expansive molecular topologies and extensive architectures. As block A, poly(ethylene glycol) (PEG) is one of the most principal categories owing to good biocompatibility and wide commercial availability. More importantly, the synthetic approaches of ABC terpolymers using PEG as a macroinitiator are facile and varied. PEG-based ABC terpolymers from design and synthesis to applications are highlighted in this review. Linear, 3-miktoarm, and cyclic polymers as the architecture are separated. The synthetic approaches of PEG-based ABC terpolymers mainly include the sequential polymerization or coupling of polymers. PEG-based ABC terpolymers have wide applications in the fields of drug carriers, gene vectors, templates for the fabrication of inorganic hollow nanospheres, and stabilizers of metal nanoparticles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Advanced Materials Laboratory, Fudan University Shanghai 200433 China
| |
Collapse
|
3
|
Teng X, Zhang P, Liu T, Xin J, Zhang J. Biobased miktoarm star copolymer from soybean oil, isosorbide, and caprolactone. J Appl Polym Sci 2019. [DOI: 10.1002/app.48281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoxu Teng
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical EngineeringYangtze Normal University, No. 16 Juxian Road, Fuling District Chongqing 408100 China
| | - Pei Zhang
- Composite Materials and Engineering CenterWashington State University Pullman Washington
| | - Tuan Liu
- Composite Materials and Engineering CenterWashington State University Pullman Washington
| | - Junna Xin
- Composite Materials and Engineering CenterWashington State University Pullman Washington
| | - Jinwen Zhang
- Composite Materials and Engineering CenterWashington State University Pullman Washington
| |
Collapse
|
4
|
|
5
|
Simal Aykac F, Aydogan C, Yagci Y. A robust strategy for the synthesis of miktoarm star copolymers by combination of ROP and photoinitiated free radical polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhao Y. Facile Synthesis and Topological Transformation of Multicomponent Miktoarm Star Copolymers. Macromol Rapid Commun 2018; 40:e1800571. [DOI: 10.1002/marc.201800571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision SynthesisJiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationState and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
7
|
Zou J, Qi Y, Su L, Wei Y, Li Z, Xu H. Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2′-Bis(2-oxazoline) Chain Extending. Macromol Res 2018. [DOI: 10.1007/s13233-019-7018-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Offenloch JT, Mutlu H, Barner-Kowollik C. Interrupted CuAAC Ligation: An Efficient Approach to Fluorescence Labeled Three-Armed Mikto Star Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Janin T. Offenloch
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
| | - Hatice Mutlu
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| |
Collapse
|
9
|
Yildirim I, Weber C, Schubert US. Old meets new: Combination of PLA and RDRP to obtain sophisticated macromolecular architectures. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Chmielarz P, Pacześniak T, Rydel-Ciszek K, Zaborniak I, Biedka P, Sobkowiak A. Synthesis of naturally-derived macromolecules through simplified electrochemically mediated ATRP. Beilstein J Org Chem 2017; 13:2466-2472. [PMID: 29234473 PMCID: PMC5704770 DOI: 10.3762/bjoc.13.243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/25/2017] [Indexed: 11/23/2022] Open
Abstract
The flavonoid-based macroinitiator was received for the first time by the transesterification reaction of quercetin with 2-bromoisobutyryl bromide. In accordance with the "grafting from" strategy, a naturally-occurring star-like polymer with a polar 3,3',4',5,6-pentahydroxyflavone core and hydrophobic poly(tert-butyl acrylate) (PtBA) side arms was synthesized via a simplified electrochemically mediated ATRP (seATRP), utilizing only 78 ppm by weight (wt) of a catalytic CuII complex. To demonstrate the possibility of temporal control, seATRP was carried out utilizing a multiple-step potential electrolysis. The rate of the polymerizations was well-controlled by applying optimal potential values during preparative electrolysis to prevent the possibility of intermolecular coupling of the growing polymer arms. This appears to be the first report using on-demand seATRP for the synthesis of QC-(PtBA-Br)5pseudo-star polymers. The naturally-derived macromolecules showed narrow MWDs (Đ = 1.08-1.11). 1H NMR spectral results confirm the formation of quercetin-based polymers. These new flavonoid-based polymer materials may find applications as antifouling coatings and drug delivery systems.
Collapse
Affiliation(s)
- Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Tomasz Pacześniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Izabela Zaborniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Paulina Biedka
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Andrzej Sobkowiak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
11
|
Fairbanks BD, Love DM, Bowman CN. Efficient Polymer-Polymer Conjugation via Thiol-ene Click Reaction. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700073] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Benjamin D. Fairbanks
- Department of Chemical and Biological Engineering; University of Colorado at Boulder; 596 UCB Boulder CO 80309 USA
| | - Dillon M. Love
- Department of Chemical and Biological Engineering; University of Colorado at Boulder; 596 UCB Boulder CO 80309 USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering; University of Colorado at Boulder; 596 UCB Boulder CO 80309 USA
| |
Collapse
|
12
|
Lee KS, Park SY, Moon HC, Kim JK. Thermal stability of ester linkage in the presence of 1,2,3-Triazole moiety generated by click reaction. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kyu Seong Lee
- Department of Chemical Engineering, National Creative Research Initiative Center for Smart Block Copolymers; Pohang University of Science and Technology; Pohang Kyungbuk 37673 Republic of Korea
| | - So Yeong Park
- Department of Chemical Engineering, National Creative Research Initiative Center for Smart Block Copolymers; Pohang University of Science and Technology; Pohang Kyungbuk 37673 Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| | - Jin Kon Kim
- Department of Chemical Engineering, National Creative Research Initiative Center for Smart Block Copolymers; Pohang University of Science and Technology; Pohang Kyungbuk 37673 Republic of Korea
| |
Collapse
|
13
|
Alizadeh R, Ghaemy M. pH-responsive ABC type miktoarm star terpolymers: Synthesis via combination of click reaction and SET-LRP, characterization, self-assembly, and controlled drug release. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Chen M, Liu C, Lin J. Correlation of cross-linked structures and properties in the characterization of dimethyl-diphenylethynyl-silane using DSC, TGA and Py-GC/MS analysis. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2014.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Synthesis of star-like polybutadienes by a combination of living anionic polymerization and “click” coupling method. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1448-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Miskolczi N. Co-pyrolysis of petroleum based waste HDPE, poly-lactic-acid biopolymer and organic waste. J IND ENG CHEM 2013. [DOI: 10.1016/j.jiec.2013.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Synthesis of H-shaped complex macromolecular structures by combination of atom transfer radical polymerization, photoinduced radical coupling, ring-opening polymerization, and iniferter processes. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|