1
|
Fu X, Wang Y, Xu L, Narumi A, Sato SI, Yang X, Shen X, Kakuchi T. Thermoresponsive Property of Poly( N, N-bis(2-methoxyethyl)acrylamide) and Its Copolymers with Water-Soluble Poly( N, N-disubstituted acrylamide) Prepared Using Hydrosilylation-Promoted Group Transfer Polymerization. Polymers (Basel) 2023; 15:4681. [PMID: 38139932 PMCID: PMC10747282 DOI: 10.3390/polym15244681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The group-transfer polymerization (GTP) of N,N-bis(2-methoxyethyl)acrylamide (MOEAm) initiated by Me2EtSiH in the hydrosilylation-promoted method and by silylketene acetal (SKA) in the conventional method proceeded in a controlled/living manner to provide poly(N,N-bis(2-methoxyethyl)acrylamide) (PMOEAm) and PMOEAm with the SKA residue at the α-chain end (MCIP-PMOEAm), respectively. PMOEAm-b-poly(N,N-dimethylacrylamide) (PDMAm) and PMOEAm-s-PDMAm and PMOEAm-b-poly(N,N-bis(2-ethoxyethyl)acrylamide) (PEOEAm) and PMOEAm-s-PEOEAm were synthesized by the block and random group-transfer copolymerization of MOEAm and N,N-dimethylacrylamide or N,N-bis(2-ethoxyethyl)acrylamide. The homo- and copolymer structures affected the thermoresponsive properties; the cloud point temperature (Tcp) increasing by decreasing the degree of polymerization (x). The chain-end group in PMOEAm affected the Tcp with PMOEAmx > MCIP-PMOEAmx. The Tcp of statistical copolymers was higher than that of block copolymers, with PMOEAmx-s-PDMAmy > PMOEAmx-b-PDMAmy and PMOEAmx-s-PEOEAmy > PMOEAmx-b-PEOEAmy.
Collapse
Affiliation(s)
- Xiangming Fu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Liang Xu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Atsushi Narumi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan;
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
| | - Xiaoran Yang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| |
Collapse
|
2
|
Shi CY, Zhan YF, Liu Y, Zhang ZP, Shen XY, Wu CK, Bai ZY, Zhang ZA, Wang J. Hydrophobic effects enhance xylooligosaccharides production from mulberry branch using xylanase-methacrylate conjugate-catalyzed hydrolysis. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
3
|
Feng Z, Wang H, Liu M, Chen T, Liu Y, Xu W, Wang H, Liu J. In situ grafting of PEG Acrylate on drugs with aliphatic hydroxyl functionalities via RAFT polymerization to synthesize drug/polymer conjugates with improved water solubility. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Wang M, Wang D, Chen Q, Li C, Li Z, Lin J. Recent Advances in Glucose-Oxidase-Based Nanocomposites for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903895. [PMID: 31747128 DOI: 10.1002/smll.201903895] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Glucose oxidase (GOx) can react with intracellular glucose and oxygen (O2 ) to produce hydrogen peroxide (H2 O2 ) and gluconic acid, which can cut off the nutrition source of cancer cells and consequently inhibit their proliferation. Therefore, GOx is recognised as an ideal endogenous oxido-reductase for cancer starvation therapy. This process can further regulate the tumor microenvironment by increasing the hypoxia and the acidity. Thus, GOx offers new possibilities for the elaborate design of multifunctional nanocomposites for tumor therapy. However, natural GOx is expensive to prepare and purify and exhibits immunogenicity, short in vivo half-life, and systemic toxicity. Furthermore, GOx is highly prone to degrade after exposure to biological conditions. These intrinsic shortcomings will undoubtedly limit its biomedical applications. Accordingly, some nanocarriers can be used to protect GOx from the surrounding environment, thus controlling or preserving the activity. A variety of nanocarriers including hollow mesoporous silica nanoparticles, metal-organic frameworks, organic polymers, and magnetic nanoparticles are summarized for the construction of GOx-based nanocomposites for multimodal synergistic cancer therapy. In addition, current challenges and promising developments in this area are highlighted.
Collapse
Affiliation(s)
- Man Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Qing Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
5
|
Vancoillie G, Van Guyse JFR, Voorhaar L, Maji S, Frank D, Holder E, Hoogenboom R. Understanding the effect of monomer structure of oligoethylene glycol acrylate copolymers on their thermoresponsive behavior for the development of polymeric sensors. Polym Chem 2019. [DOI: 10.1039/c9py01326a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligoethylene glycol acrylate (OEGA) polymers are a class of thermoresponsive polymers. Three new OEGA monomer combinations were investigated, which revealed three different types of thermoresponsive behavior as a function of copolymer composition.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Joachim F. R. Van Guyse
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Lenny Voorhaar
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Samarendra Maji
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Daniel Frank
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Elizabeth Holder
- Functional Polymers Group and Institute of Polymer Technology
- University of Wuppertal
- D-42097 Wuppertal
- Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| |
Collapse
|
6
|
Chado GR, Holland EN, Tice AK, Stoykovich MP, Kaar JL. Exploiting the Benefits of Homogeneous and Heterogeneous Biocatalysis: Tuning the Molecular Interaction of Enzymes with Solvents via Polymer Modification. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garrett R. Chado
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Elijah N. Holland
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Andrew K. Tice
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark P. Stoykovich
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Joel L. Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
8
|
Chen T, Xu Y, Yang W, Li A, Wang Y, Sun J, Liu J. Design of Enzyme Micelles with Controllable Concavo-Convex Micromorphologies for Highly Enhanced Stability and Catalytical Activity. Macromol Biosci 2018; 18. [DOI: 10.1002/mabi.201700312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/25/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Chen
- Center for Micro/Nano Luminescent and Electrochemical Materials; College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 China
| | - Yuanhong Xu
- Center for Micro/Nano Luminescent and Electrochemical Materials; College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 China
| | - Wenrong Yang
- School of Life and Environmental Sciences; Deakin University; Geelong VIC 3217 Australia
| | - Aihua Li
- Center for Micro/Nano Luminescent and Electrochemical Materials; College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 China
| | - Yao Wang
- Center for Micro/Nano Luminescent and Electrochemical Materials; College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 China
| | - Jing Sun
- School of Polymer Science & Engineering; Qingdao University of Science and Technology; Zhengzhou Road 53 Qingdao 266042 China
| | - Jingquan Liu
- Center for Micro/Nano Luminescent and Electrochemical Materials; College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Qingdao University; Qingdao 266071 China
| |
Collapse
|
9
|
|
10
|
Xu G, Xu Y, Li A, Chen T, Liu J. Enzymatic bioactivity investigation of glucose oxidase modified with hydrophilic or hydrophobic polymers via in situ RAFT polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gengfang Xu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Yuanhong Xu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Aihua Li
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Tao Chen
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Jingquan Liu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| |
Collapse
|
11
|
Tehrani SM, Lu Y, Winnik MA. PEGMA-Based Microgels: A Thermoresponsive Support for Enzyme Reactions. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sepehr Mastour Tehrani
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Yijie Lu
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Mitchell A. Winnik
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| |
Collapse
|
12
|
Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. NATURE MATERIALS 2015; 14:143-59. [PMID: 25401924 DOI: 10.1038/nmat4106] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The chemical structure and function of biomacromolecules has evolved to fill many essential roles in biological systems. More specifically, proteins, peptides, nucleic acids and polysaccharides serve as vital structural components, and mediate chemical transformations and energy/information storage processes required to sustain life. In many cases, the properties and applications of biological macromolecules can be further expanded by attaching synthetic macromolecules. The modification of biomacromolecules by attaching a polymer that changes its properties in response to environmental variations, thus affecting the properties of the biomacromolecule, has led to the emergence of a new family of polymeric biomaterials. Here, we summarize techniques for conjugating responsive polymers to biomacromolecules and highlight applications of these bioconjugates reported so far. In doing so, we aim to show how advances in synthetic tools could lead to rapid expansion in the variety and uses of responsive bioconjugates.
Collapse
Affiliation(s)
- Isidro Cobo
- Key Centre for Polymers &Colloids, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ming Li
- Tyco Fire Protection Products, Mansfield, Texas 76063, USA
| | - Brent S Sumerlin
- George &Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science &Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Sébastien Perrier
- 1] Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK [2] Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Zhang J, Li A, Liu H, Yang D, Liu J. Well-controlled RAFT polymerization initiated by recyclable surface-modified Nb(OH)5
nanoparticles under visible light irradiation. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jizhen Zhang
- College of Chemical Science and Engineering; Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University; Qingdao 266071 China
| | - Aihua Li
- College of Chemical Science and Engineering; Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University; Qingdao 266071 China
| | - Huihui Liu
- College of Chemical Science and Engineering; Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University; Qingdao 266071 China
| | - Dongjiang Yang
- College of Chemical Science and Engineering; Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University; Qingdao 266071 China
| | - Jingquan Liu
- College of Chemical Science and Engineering; Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University; Qingdao 266071 China
| |
Collapse
|
14
|
|
15
|
Voorhaar L, Wallyn S, Du Prez FE, Hoogenboom R. Cu(0)-mediated polymerization of hydrophobic acrylates using high-throughput experimentation. Polym Chem 2014. [DOI: 10.1039/c4py00239c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper the optimization of the Cu(0)-mediated polymerization of n-butyl acrylate and 2-methoxyethyl acrylate is reported using an automated parallel synthesizer.
Collapse
Affiliation(s)
- Lenny Voorhaar
- Supramolecular Chemistry Group
- Department of Organic Chemistry
- Ghent University
- B-9000 Ghent, Belgium
- SIM vzw
| | - Sofie Wallyn
- Polymer Chemistry Research Group
- Department of Organic Chemistry
- Ghent University
- B-9000 Ghent, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Department of Organic Chemistry
- Ghent University
- B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic Chemistry
- Ghent University
- B-9000 Ghent, Belgium
| |
Collapse
|