1
|
Hwang E, Lim YB. Self-Assembled Protein Nanostructures via Irreversible Peptide Assembly. ACS Macro Lett 2023; 12:1679-1684. [PMID: 38035369 DOI: 10.1021/acsmacrolett.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The quaternary structure of proteins extends the functionality of monomeric proteins. Similarly, self-assembled protein nanostructures (SPrNs) have great potential to improve the functionality and complexity of proteins; however, the difficulty associated with the fabrication of SPrNs is far greater than that associated with the fabrication of self-assembled peptides or polymers and often requires sophisticated computational design. To make the process of SPrN formation simpler and more intuitive, herein, we devise a strategy to adopt an irreversible self-assembled peptide nanostructure (SPeN) process en route to the formation of SPrNs. The strategy employs three sequential steps: first, the formation of SPeNs (an equilibrium process); second, covalent capture of SPeNs (an irreversible process); third, the final assembly of SPrNs via protein-peptide interactions (an equilibrium process). This strategy allowed us to fabricate SPrNs in which the size of the protein was approximately 9 times higher than that of the self-assembling peptide. Furthermore, we demonstrated that the irreversible SPeN could be used as a primary building block for assembly into superstructures. Overall, this strategy is conceptually as simple as SPeN fabrication and is potentially applicable to any soluble protein.
Collapse
Affiliation(s)
- Euimin Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Xu C, Zhang D, Chen X. Proteinosomes via Self-Assembly of Thermoresponsive Miktoarm Polymer Protein Bioconjugates. Biomacromolecules 2023; 24:1994-2002. [PMID: 37002865 DOI: 10.1021/acs.biomac.2c01368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
To fabricate nanoscale proteinosomes, thermoresponsive miktoarm polymer protein bioconjugates were prepared through highly efficient molecular recognition between the β-cyclodextrin modified BSA (CD-BSA) and the adamantyl group anchored at the junction point of the thermoresponsive block copolymer poly(ethylene glycol)-b-poly(di(ethylene glycol) methyl ether methacrylate) (PEG-b-PDEGMA). PEG-b-PDEGMA was synthesized by the Passerini reaction of benzaldehyde-modified PEG, 2-bromo-2-methylpropionic acid, and 1-isocyanoadamantane, followed by the atom transfer radical polymerization of DEGMA. Two block copolymers with different chain lengths of PDEGMA were prepared, and both self-assembled into polymersomes at a temperature above their lower critical solution temperatures (LCST). The two copolymers can undergo molecular recognition with the CD-BSA and form miktoarm star-like bioconjugates. The bioconjugates self-assembled into ∼160 nm proteinosomes at a temperature above their LCSTs, and the miktoarm star-like structure has a great effect on the formation of the proteinosomes. Most of the secondary structure and esterase activity of BSA in the proteinosomes were maintained. The proteinosomes exhibited low toxicity to the 4T1 cells and could deliver model drug doxorubicin into the 4T1 cells.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Changlan Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Daowen Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Xiaoai Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
3
|
Chen C, Gao P, Wang H, Cheng Y, Lv J. Histidine-based coordinative polymers for efficient intracellular protein delivery via enhanced protein binding, cellular uptake, and endosomal escape. Biomater Sci 2023; 11:1765-1775. [PMID: 36648450 DOI: 10.1039/d2bm01541b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymers are one of the most promising protein delivery carriers; however, their applications are hindered by low delivery efficacy owing to their undesirable performance in protein binding, cellular uptake and endosomal escape. Here, we designed a series of histidine-based coordinative polymers for efficient intracellular protein delivery. Coordination of metal ions such as Ni2+, Zn2+, and Cu2+ with histidine residues on a polymer greatly improved its performance in protein binding, complex stability, cellular uptake and endosomal escape, therefore achieving highly improved protein delivery efficacy. Among the coordinative polymers, the Zn2+-coordinated one exhibited the highest cellular uptake, while the Cu2+-coordinated one exhibited the highest endosomal escape. The Ni2+-coordinated polymer formed large-sized aggregates with cargo proteins and showed insufficient protein release after endocytosis. The results obtained in this study provided new insight into the development of coordinative polymer-based protein delivery systems.
Collapse
Affiliation(s)
- Changyuan Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Hango CR, Davis HC, Uddin EA, Minter LM, Tew GN. Increased block copolymer length improves intracellular availability of protein cargo. Polym Chem 2022. [DOI: 10.1039/d2py00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic protein transduction domain mimics (PTDMs) of various lengths were used for protein delivery in Jurkat T cells. Although longer PTDMs facilitated greater cargo internalization, shorter PTDMs yielded greater cargo activity.
Collapse
Affiliation(s)
- Christopher R. Hango
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Hazel C. Davis
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Esha A. Uddin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Lisa M. Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
5
|
Sheard DE, Li W, O’Brien-Simpson NM, Separovic F, Wade JD. Peptide Multimerization as Leads for Therapeutic Development. BIOLOGICS 2021; 2:15-44. [DOI: 10.3390/biologics2010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Multimerization of peptide structures has been a logical evolution in their development as potential therapeutic molecules. The multivalent properties of these assemblies have attracted much attention from researchers in the past and the development of more complex branching dendrimeric structures, with a wide array of biocompatible building blocks is revealing previously unseen properties and activities. These branching multimer and dendrimer structures can induce greater effect on cellular targets than monomeric forms and act as potent antimicrobials, potential vaccine alternatives and promising candidates in biomedical imaging and drug delivery applications. This review aims to outline the chemical synthetic innovations for the development of these highly complex structures and highlight the extensive capabilities of these molecules to rival those of natural biomolecules.
Collapse
Affiliation(s)
- Dean E. Sheard
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Wenyi Li
- ACTV Research Group, Centre for Oral Health Research, The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Neil M. O’Brien-Simpson
- ACTV Research Group, Centre for Oral Health Research, The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - John D. Wade
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
6
|
Dirauf M, Fritz N, Gottschaldt M, Weber C, Schubert US. Poly(2-ethyl-2-oxazoline) Featuring a Central Amino Moiety. Macromol Rapid Commun 2021; 42:e2100132. [PMID: 33960561 DOI: 10.1002/marc.202100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Indexed: 11/08/2022]
Abstract
The incorporation of an amino group into a bifunctional initiator for the cationic ring-opening polymerization (CROP) is achieved in a two-step reaction. Detailed kinetic studies using 2-ethyl-2-oxazoline demonstrate the initiators' eligibility for the CROP yielding well-defined polymers featuring molar masses of about 2000 g mol-1 . Deprotection of the phthalimide moiety subsequent to polymerization enables the introduction of a cyclooctyne group in central position of the polymer which is further exploited in a strain-promoted alkyne-azide click reaction (SpAAC) with a Fmoc-protected azido lysine representing a commonly used binding motif for site specific polymer-protein/peptide conjugation. In-depth characterization via electrospray ionization mass spectrometry (ESI) confirms the success of all post polymerization modification steps.
Collapse
Affiliation(s)
- Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Nicole Fritz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
7
|
Cajigas S, Orozco J. Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules 2020; 25:molecules25153542. [PMID: 32756410 PMCID: PMC7436128 DOI: 10.3390/molecules25153542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.
Collapse
|
8
|
Ravishankar S, Suzuki S, Sawada T, Lim S, Serizawa T. Preparation and Dynamic Behavior of Protein-Polymer Complexes Formed with Polymer-Binding Peptides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Samyukta Ravishankar
- School of Chemical & Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457
| | - Seigo Suzuki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-17 Honcho, Kawaguchi, Saitama 332-0012
| | - Sierin Lim
- School of Chemical & Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550
| |
Collapse
|
9
|
Altinbasak I, Arslan M, Sanyal R, Sanyal A. Pyridyl disulfide-based thiol–disulfide exchange reaction: shaping the design of redox-responsive polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py01215g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.
Collapse
Affiliation(s)
| | - Mehmet Arslan
- Yalova University
- Faculty of Engineering
- Department of Polymer Materials Engineering
- 77100 Yalova
- Turkey
| | - Rana Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| |
Collapse
|
10
|
Ferreira Soares DC, Oda CMR, Monteiro LOF, de Barros ALB, Tebaldi ML. Responsive polymer conjugates for drug delivery applications: recent advances in bioconjugation methodologies. J Drug Target 2018; 27:355-366. [PMID: 30010436 DOI: 10.1080/1061186x.2018.1499747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Caroline Mari Ramos Oda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Andre Luis Branco de Barros
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
11
|
Posey ND, Tew GN. Associative and Dissociative Processes in Non-Covalent Polymer-Mediated Intracellular Protein Delivery. Chem Asian J 2018; 13:3351-3365. [DOI: 10.1002/asia.201800849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Nicholas D. Posey
- Department of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
| | - Gregory N. Tew
- Department of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
- Department of Veterinary and Animal Sciences; University of Massachusetts Amherst; Amherst MA 01003 USA
- Molecular and Cellular Biology Program; University of Massachusetts Amherst; Amherst MA 01003 USA
| |
Collapse
|
12
|
Lillo AM, Lopez CL, Rajale T, Yen HJ, Magurudeniya HD, Phipps ML, Balog ERM, Sanchez TC, Iyer S, Wang HL, Michalczyk R, Rocha RC, Martinez JS. Conjugation of Amphiphilic Proteins to Hydrophobic Ligands in Organic Solvent. Bioconjug Chem 2018; 29:2654-2664. [PMID: 29979588 DOI: 10.1021/acs.bioconjchem.8b00354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein-ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs ( p-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile. Ultimately, this behavior leads to low conjugation efficiency and contamination with strong noncovalent "conjugates". After exploring the solubility of sEL in various organic solvents, we have established an efficient conjugation methodology for obtaining covalent conjugates virtually free of contaminating noncovalent complexes. When conjugating carboxylated ligands to the amphiphile amines, we demonstrate that even when only one amine (the N-terminus) is present, its derivatization is 98% efficient. When conjugating amine moieties to the amphiphile carboxyls (a problematic configuration), protein multimerization is avoided, 98-100% of the protein is conjugated, and the unreacted ligand is recovered in pure form. Our syntheses occur in "one pot", and our purification procedure is a simple workup utilizing a combination of water and organic solvent extractions. This conjugation methodology might provide a solution to problems arising from solubility mismatch of protein and ligand, and it is likely to be widely applied for modification of recombinant amphiphiles used for drug delivery (PEG-antibodies, polymer-enzymes, food proteins), cell adhesion (collagen, hydrophobins), synthesis of nanostructures (peptides), and engineering of biocompatible optoelectronics (biological polymers), to cite a few.
Collapse
Affiliation(s)
| | | | | | - Hung-Ju Yen
- Institute of Chemistry , Academia Sinica , Nankang , Taipei , Taiwan 11529
| | | | | | - Eva Rose M Balog
- Department of Chemistry and Physics , University of New England , Biddeford , Maine 04005 , United States
| | | | | | - Hsing-Lin Wang
- Department of Materials Science and Engineering , Southern University of Science and Technology , Nanshan District, Shenzhen , China 518055
| | | | | | | |
Collapse
|
13
|
Posey ND, Hango CR, Minter LM, Tew GN. The Role of Cargo Binding Strength in Polymer-Mediated Intracellular Protein Delivery. Bioconjug Chem 2018; 29:2679-2690. [DOI: 10.1021/acs.bioconjchem.8b00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Heterotelechelic Polymers by Ring-Opening Metathesis and Regioselective Chain Transfer. Angew Chem Int Ed Engl 2017; 57:914-917. [DOI: 10.1002/anie.201708733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/08/2017] [Indexed: 11/07/2022]
|
15
|
Liu P, Yasir M, Ruggi A, Kilbinger AFM. Heterotelechelic Polymers by Ring-Opening Metathesis and Regioselective Chain Transfer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peng Liu
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Mohammad Yasir
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Albert Ruggi
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Andreas F. M. Kilbinger
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
16
|
Mahmood SK, Razak ISA, Ghaji MS, Yusof LM, Mahmood ZK, Rameli MABP, Zakaria ZAB. In vivo evaluation of a novel nanocomposite porous 3D scaffold in a rabbit model: histological analysis. Int J Nanomedicine 2017; 12:8587-8598. [PMID: 29238193 PMCID: PMC5716328 DOI: 10.2147/ijn.s145663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The healing of load-bearing segmental defects in long bones is a challenge due to the complex nature of the weight that affects the bone part and due to bending, shearing, axial, and torsional forces. An innovative porous 3D scaffolds implant of CaCO3 aragonite nanocomposite derived from cockle shell was advanced for substitute bone solely for load-bearing cases. The biomechanical characteristics of such materials were designed to withstand cortical bone strength. In promoting bone growth to the implant material, an ideal surface permeability was formed by means of freeze drying and by adding copolymers to the materials. The properties of coating and copolymers supplement were also assessed for bone-implant connection resolutions. To examine the properties of the material in advanced biological system, an experimental trial in an animal model was carried out. Critical sized defect of bone was created in rabbit's radial bone to assess the material for a load-bearing application with a short and extended period assessment with histological evaluation of the incorporated implanted material to the bone of the host. Trials in animal models proved that the material has the capability of enduring load-bearing conditions for long-term use devoid of breaking or generating stress that affects the host bone. Histological examination further confirmed the improved integration of the implanted materials to the host bone with profound bone development into and also above the implanted scaffold, which was attained with negligible reaction of the tissues to a foreign implanted material.
Collapse
Affiliation(s)
- Saffanah Khuder Mahmood
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia.,Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Mosul, Mosul, Iraq
| | - Intan-Shameha Abdul Razak
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Mustafa Saddam Ghaji
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Loqman Mohamed Yusof
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine
| | | | - Mohd Adha Bin P Rameli
- Laboratory of Molecular Biomedicine, Institute of Biosciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Zuki Abu Bakar Zakaria
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia.,Laboratory of Molecular Biomedicine, Institute of Biosciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
17
|
Mauri E, Veglianese P, Papa S, Mariani A, De Paola M, Rigamonti R, Chincarini GM, Rimondo S, Sacchetti A, Rossi F. Chemoselective functionalization of nanogels for microglia treatment. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Chanphai P, Agudelo D, Tajmir-Riahi HA. PEG and mPEG-anthracene conjugate with trypsin and trypsin inhibitor: hydrophobic and hydrophilic contacts. J Biomol Struct Dyn 2017; 35:2257-2268. [PMID: 27434220 DOI: 10.1080/07391102.2016.1214621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
The conjugation of trypsin (try) and trypsin inhibitor (tryi) with poly(ethylene glycol) (PEG) and methoxypoly(ethylene glycol) anthracene (mPEG-anthracene) was investigated in aqueous solution, using multiple spectroscopic methods, thermodynamic analysis, and molecular modeling. Thermodynamic parameters ΔS, ΔH, and ΔG showed protein-PEG bindings occur via H-bonding and van der Waals contacts with trypsin inhibitor forming more stable conjugate than trypsin. As polymer size increased more stable PEG-protein conjugate formed, while hydrophobic mPEG-anthracene forms less stable protein complexes. Modeling showed the presence of several H-bonding contacts between polymer and amino acids that stabilize protein-polymer conjugation. Polymer complexation induces more perturbations of trypsin inhibitor structure than trypsin with reduction of protein alpha-helix and major increase in random structures, indicating protein structural destabilization.
Collapse
Affiliation(s)
- P Chanphai
- a Department of Chemistry-Biochemistry and Physics , University of Québec at Trois-Rivières , C. P. 500, Trois-Rivieres G9A 5H7 , Quebec , Canada
| | - D Agudelo
- a Department of Chemistry-Biochemistry and Physics , University of Québec at Trois-Rivières , C. P. 500, Trois-Rivieres G9A 5H7 , Quebec , Canada
| | - H A Tajmir-Riahi
- a Department of Chemistry-Biochemistry and Physics , University of Québec at Trois-Rivières , C. P. 500, Trois-Rivieres G9A 5H7 , Quebec , Canada
| |
Collapse
|
19
|
Lu L, Yuan L, Yan J, Tang C, Wang Q. Development of Core–Shell Nanostructures by In Situ Assembly of Pyridine-Grafted Diblock Copolymer and Transferrin for Drug Delivery Applications. Biomacromolecules 2016; 17:2321-8. [DOI: 10.1021/acs.biomac.6b00032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Lu
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Liang Yuan
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jing Yan
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qian Wang
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
20
|
Ventura J, Eron SJ, González-Toro DC, Raghupathi K, Wang F, Hardy JA, Thayumanavan S. Reactive Self-Assembly of Polymers and Proteins to Reversibly Silence a Killer Protein. Biomacromolecules 2015; 16:3161-71. [PMID: 26331939 PMCID: PMC4838044 DOI: 10.1021/acs.biomac.5b00779] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conjugation of biologically active proteins to polymeric materials is of great interest in the treatment of cancer and other diseases of protein deficiency. The conjugation of such biomacromolecules is challenging both due to their hydrophilicity and propensity to denature under non-native conditions. We describe a novel reactive self-assembly approach to "wrap" a protein with polymers, simultaneously protecting its delicate folded state and silencing its enzymatic activity. This approach has been demonstrated using caspase-3, an apoptosis-inducing protein, as the first case study. The protein-polymer conjugation is designed to be reversed under the native conditions for caspase-3, that is, the reducing environment found in the cytosol. The current strategy allowed release and recovery of up to 86% of caspase activity and nanogel-caspase-3 conjugates induced 70-80% apoptotic cell death shortly thereafter. This approach is widely generalizable and should be applicable to the intracellular delivery of a wide range of therapeutic proteins for treatment of complex and genetic diseases.
Collapse
Affiliation(s)
- Judy Ventura
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Scott J. Eron
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | | | | | - Feng Wang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
21
|
Gok O, Kosif I, Dispinar T, Gevrek TN, Sanyal R, Sanyal A. Design and Synthesis of Water-Soluble Multifunctionalizable Thiol-Reactive Polymeric Supports for Cellular Targeting. Bioconjug Chem 2015; 26:1550-60. [PMID: 26030527 DOI: 10.1021/acs.bioconjchem.5b00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design and synthesis of novel water-soluble polymers bearing reactive side chains are actively pursued due to their increasing demand in areas such as bioconjugation and drug delivery. This study reports the fabrication of poly(ethylene glycol) methacrylate based thiol-reactive water-soluble polymeric supports that can serve as targeted drug delivery vehicles. Thiol-reactive maleimide units were incorporated into polymers as side chains by use of a furan-protected maleimide containing monomer. Atom transfer radical polymerization (ATRP) was employed to obtain a family of well-defined copolymers with narrow molecular weight distributions. After the polymerization, the maleimide groups were activated to their reactive form, ready for conjugation with thiol-containing molecules. Efficient functionalization of the maleimide moieties was demonstrated by conjugation of a tripeptide glutathione under mild and reagent-free aqueous conditions. Additionally, hydrophobic thiol-containing dye (Bodipy-SH) and a cyclic peptide-based targeting group (cRGDfC) were sequentially appended onto the maleimide bearing polymers to demonstrate their efficient multifunctionalization. The conjugates were utilized for in vitro experiments over both cancerous and healthy breast cell lines. Obtained results demonstrate that the conjugates were nontoxic, and displayed efficient cellular uptake. The presence of the peptide based targeting group had a clear effect on increasing the uptake of the dye-conjugated polymers into cells when compared to the construct devoid of the peptide. Overall, the facile synthesis and highly efficient multifunctionalization of maleimide-containing thiol-reactive copolymers offer a novel and attractive class of polyethylene glycol-based water-soluble supports for drug delivery.
Collapse
Affiliation(s)
- Ozgul Gok
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Irem Kosif
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Tugba Dispinar
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Tugce Nihal Gevrek
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| |
Collapse
|
22
|
Vanparijs N, Maji S, Louage B, Voorhaar L, Laplace D, Zhang Q, Shi Y, Hennink WE, Hoogenboom R, De Geest BG. Polymer-protein conjugation via a ‘grafting to’ approach – a comparative study of the performance of protein-reactive RAFT chain transfer agents. Polym Chem 2015. [DOI: 10.1039/c4py01224k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The performances of various protein-reactive RAFT CTAs to afford polymer-protein conjugation via a grafting-to approach were compared.
Collapse
Affiliation(s)
- N. Vanparijs
- Department of Pharmaceutics
- Ghent University
- 9000 Ghent
- Belgium
| | - S. Maji
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - B. Louage
- Department of Pharmaceutics
- Ghent University
- 9000 Ghent
- Belgium
| | - L. Voorhaar
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - D. Laplace
- Laboratory for Organic Synthesis
- Department of Organic Chemistry
- 9000 Ghent
- Belgium
| | - Q. Zhang
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Y. Shi
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3584 Utrecht
- The Netherlands
| | - W. E. Hennink
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3584 Utrecht
- The Netherlands
| | - R. Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - B. G. De Geest
- Department of Pharmaceutics
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
23
|
Duro-Castano A, Movellan J, Vicent MJ. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater Sci 2015; 3:1321-34. [DOI: 10.1039/c5bm00166h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Branched polymers own special properties derived from their intrinsic characteristics. These properties make them ideal candidates to be used as carriers for an improved generation of polymer-drug conjugates.
Collapse
Affiliation(s)
- A. Duro-Castano
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - J. Movellan
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - M. J. Vicent
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| |
Collapse
|
24
|
Molla M, Marcinko T, Prasad P, Deming D, Garman SC, Thayumanavan S. Unlocking a caged lysosomal protein from a polymeric nanogel with a pH trigger. Biomacromolecules 2014; 15:4046-53. [PMID: 25291086 PMCID: PMC4229022 DOI: 10.1021/bm501091p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/19/2014] [Indexed: 12/13/2022]
Abstract
A polymeric nanogel has been used to sequester and turn off a lysosomal protein, acid α-glucosidase (GAA). The nanogel contains a β-thiopropionate cross-linker, which endows the nanogel with pH-sensitivity. While encapsulation of the enzyme fully turns off its activity, approximately 75% of the activity is recovered upon reducing the pH to 5.0. The recovered activity is ascribed to pH-induced degradation of the β-thiopropionate cross-linker causing the swelling of the nanogel and ultimately causing the release of the enzyme. We envision that strategies for sequestering protein molecules and releasing them at lysosomal pH might open up new directions for therapeutic treatment of lysosomal storage diseases.
Collapse
Affiliation(s)
- Mijanur
Rahaman Molla
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tyler Marcinko
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Priyaa Prasad
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Derrick Deming
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Scott C. Garman
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Salmaso S, Bersani S, Scomparin A, Balasso A, Brazzale C, Barattin M, Caliceti P. A novel soluble supramolecular system for sustained rh-GH delivery. J Control Release 2014; 194:168-77. [DOI: 10.1016/j.jconrel.2014.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|