1
|
Physical Properties and Polymorphism of Acrylic Acid-Grafted Poly(1,4-butylene adipate-co-terephthalate)/Organically Modified Layered Double Hydroxide Nanocomposites. Polymers (Basel) 2022; 14:polym14030492. [PMID: 35160479 PMCID: PMC8839520 DOI: 10.3390/polym14030492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Novel and biodegradable acrylic acid-grafted poly(1,4-butylene adipate-co-terephthalate)/organically modified layered double hydroxide (g-PBAT/m-LDH) nanocomposites were synthesized through the polycondensation and transesterification process, with the covalent linkages between the polymer and the inorganic materials. X-ray diffraction and transmission electron microscopy were used to characterize the structure and morphology of the g-PBAT/m-LDH nanocomposites. The experimental results show that the m-LDH was exfoliated and widely distributed in the g-PBAT matrix. The addition of m-LDH into the g-PBAT extensively improved the storage modulus at −90 °C, when compared to that of the pure g-PBAT matrix. The effects of the minor comonomer of the butylene terephthalate (BT) unit and the addition of m-LDH on the crystallization behavior, and the polymorphic crystals of the g-PBAT at numerous crystallization temperatures, were examined, using a differential scanning calorimeter (DSC). The data indicate that the minor comonomer of the BT unit into g-PBAT can significantly change the starting formation temperatures of the α-form and ꞵ-form crystals, while a change in the starting formation temperatures of the α-form and ꞵ-form crystals using the addition of m-LDH into g-PBAT is not evident.
Collapse
|
2
|
Tseng LY, Chen EC, Wang JM, Wu TM. Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate. Polymers (Basel) 2020; 12:polym12092149. [PMID: 32967201 PMCID: PMC7570023 DOI: 10.3390/polym12092149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
A new biodegradable aliphatic-aromatic poly (butylene carbonate-co-terephthalate) (PBCT-85) with the molar ratio [BC]/[BT] = 85/15, successfully synthesized through transesterification and polycondensation processes, was identified using 1H-NMR spectra. Various weight ratios of PBCT/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were manufactured using the solution mixing process. Wide-angle X-ray diffraction and transmission electron microscopy were used to examine the morphology of PBCT-85/m-PPZn nanocomposites. Both results exhibited that the stacking layers of m-PPZn were intercalated into the PBCT-85 polymer matrix. The additional m-PPZn into PBCT-85 copolymer matrix significantly enhanced the storage modulus at −70 °C, as compared to that of neat PBCT-85. The lipase from Pseudomonas sp. was used to investigate the enzymatic degradation of PBCT-85/m-PPZn nanocomposites. The weight loss decreased as the loading of m-PPZn increased, indicating that the existence of m-PPZn inhibits the degradation of the PBCT-85 copolymers. This result might be attributed to the higher degree of contact angle for PBCT-85/m-PPZn nanocomposites. The PBCT-85/m-PPZn composites approved by MTT assay are appropriate for cell growth and might have potential in the application of biomedical materials.
Collapse
|
3
|
Ma B, Martín C, Kurapati R, Bianco A. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chem Soc Rev 2020; 49:6224-6247. [PMID: 32724940 DOI: 10.1039/c9cs00822e] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A large number of graphene and other 2D materials are currently used for the development of new technologies, increasingly entering different industrial sectors. Interrogating the impact of such 2D materials on health and environment is crucial for both modulating their potential toxicity in living organisms and eliminating them from the environment. In this context, understanding if 2D materials are bio-persistent is mandatory. In this review we describe the importance of biodegradability and decomposition of 2D materials. We initially cover the biodegradation of graphene family materials, followed by other emerging classes of 2D materials including transition metal dichalcogenides and oxides, Xenes, Mxenes and other non-metallic 2D materials. We explain the role of defects and functional groups, introduced onto the surface of the materials during their preparation, and the consequences of chemical functionalization on biodegradability. In strong relation to the chemistry on 2D materials, we describe the concept of "degradation-by-design" that we contributed to develop, and which concerns the covalent modification with appropriate molecules to enhance the biodegradability of 2D materials. Finally, we cover the importance of designing new biodegradable 2D conjugates and devices for biomedical applications as drug delivery carriers, in bioelectronics, and tissue engineering. We would like to highlight that the biodegradation of 2D materials mainly depends on the type of material, the chemical functionalization, the aqueous dispersibility and the redox potentials of the different oxidative environments. Biodegradation is one of the necessary conditions for the safe application of 2D materials. Therefore, we hope that this review will help to better understand their biodegradation processes, and will stimulate the chemists to explore new chemical strategies to design safer products, composites and devices containing 2D materials.
Collapse
Affiliation(s)
- Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
4
|
Morphology, Thermal Stability, and Flammability Properties of Polymer-Layered Double Hydroxide (LDH) Nanocomposites: A Review. CRYSTALS 2020. [DOI: 10.3390/cryst10070612] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The utilization of layered nanofillers in polymer matrix, as reinforcement, has attracted great interest in the 21st century. This can be attributed to the high aspect ratios of the nanofillers and the attendant substantial improvement in different properties (i.e., increased flammability resistance, improved modulus and impact strength, as well as improved barrier properties) of the resultant nanocomposite when compared to the neat polymer matrix. Amongst the well-known layered nanofillers, layered inorganic materials, in the form of LDHs, have been given the most attention. LDH nanofillers have been employed in different polymers due to their flexibility in chemical composition as well as an adjustable charge density, which permits numerous interactions with the host polymer matrices. One of the most important features of LDHs is their ability to act as flame-retardant materials because of their endothermic decomposition. This review paper gives detailed information on the: preparation methods, morphology, flammability, and barrier properties as well as thermal stability of LDH/polymer nanocomposites.
Collapse
|
5
|
Lin SH, Wang HT, Wang JM, Wu TM. Enzymatic Degradation of Acrylic Acid-Grafted Poly(butylene succinate-co-terephthalate) Nanocomposites Fabricated Using Heat Pressing and Freeze-Drying Techniques. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E376. [PMID: 31947565 PMCID: PMC7013954 DOI: 10.3390/ma13020376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
Biodegradable acrylic acid-grafted poly(butylene succinate-co-terephthalate) (g-PBST)/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were effectively fabricated containing covalent bonds between the g-PBST and m-PPZn. The results of wide-angle X-ray diffraction and transmission electron microscopy revealed that the morphology of the g-PBST/m-PPZn nanocomposites contained a mixture of partially exfoliated or intercalated conformations. The isothermal crystallization behavior of the nanocomposites showed that the half-time for crystallization of 5 wt % g-PBST/m-PPZn nanocomposites was less than 1 wt % g-PBST/m-PPZn nanocomposites. This finding reveals that increasing the loading of m-PPZn can increase the crystallization rate of nanocomposites. Degradation tests of g-PBST/m-PPZn nanocomposites fabricated using the heat pressing and the freeze-drying process were performed by lipase from Pseudomonas sp. The degradation rates of g-PBST-50/m-PPZn nanocomposites were significantly lower than those of g-PBST-70/m-PPZn nanocomposites. The g-PBST-50 degraded more slowly due to the higher quantity of aromatic group and increased stiffness of the polymer backbone. The degradation rate of the freeze-drying specimens contained a more extremely porous conformation compared to those fabricated using the heat pressing process.
Collapse
Affiliation(s)
| | | | | | - Tzong-Ming Wu
- Department of Materials Science and Engineering, National Chung Hsing University, 250 KuoKuang Road, Taichung 402, Taiwan; (S.-H.L.); (H.-T.W.); (J.-M.W.)
| |
Collapse
|
6
|
Xie J, Wang Z, Zhao Q, Yang Y, Xu J, Waterhouse GIN, Zhang K, Li S, Jin P, Jin G. Scale-Up Fabrication of Biodegradable Poly(butylene adipate- co-terephthalate)/Organophilic-Clay Nanocomposite Films for Potential Packaging Applications. ACS OMEGA 2018; 3:1187-1196. [PMID: 31457960 PMCID: PMC6641378 DOI: 10.1021/acsomega.7b02062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 06/02/2023]
Abstract
The development of biodegradable packing materials is a global priority due to the huge volumes of plastic refuse entering landfills and the environment. In this study, a series of biodegradable nanocomposite films based on poly(butylene adipate-co-terephthalate) (PBAT) and reinforced with an organophilic layered double hydroxide (OLDH) were scale-up fabricated. The OLDH nanosheets with a basal spacing of 4.07 nm were presynthesized on a large-scale by solvent-free high-energy ball milling. All of the PBAT/OLDH nanocomposite films (0.5-4 wt % OLDH) showed a uniform dispersion of OLDH nanosheets in the PBAT matrix. A PBAT/OLDH film containing 1 wt % OLDH (denoted herein as OLDH-1) demonstrated outstanding thermal, optical, mechanical, and water vapor barrier properties compared with a pure PBAT film (OLDH-0), including a 37% reduction in haze and a 41.9% increase in nominal tensile strain at break dramatically. Furthermore, the food packaging measurement revealed that the OLDH-1 film showed a better packaging effect than the pure PBAT film and commercial polyethylene packing materials. The feasibility of scale-up manufacture and the excellent processability, manufacturing scalability, mechanical performance, optical transparency, water vapor barrier properties, and food packaging performance of the PBAT/OLDH nanocomposite films encourage their future application as biodegradable packaging films.
Collapse
Affiliation(s)
- Jiazhuo Xie
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Zhou Wang
- State
Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Co., Ltd, 19 Xingdaxi Street, Linshu 276700, Shandong, China
| | - Qinghua Zhao
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
- Department
of Basic Courses, Shandong Medicine Technician
College, 999 Fengtian
Road, Tai’an 271000, Shandong, China
| | - Yuechao Yang
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Jing Xu
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Geoffrey I. N. Waterhouse
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
- School
of Chemical Sciences, The University of
Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kun Zhang
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Shan Li
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Peng Jin
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Geyang Jin
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| |
Collapse
|
7
|
Xie J, Wang H, Wang Z, Zhao Q, Yang Y, Waterhouse GIN, Hao L, Xiao Z, Xu J. Innovative Linear Low Density Polyethylene Nanocomposite Films Reinforced with Organophilic Layered Double Hydroxides: Fabrication, Morphology and Enhanced Multifunctional Properties. Sci Rep 2018; 8:52. [PMID: 29311688 PMCID: PMC5758754 DOI: 10.1038/s41598-017-18811-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 12/04/2022] Open
Abstract
Herein, we reported the successful development of novel nanocomposite films based on linear low density polyethylene (LLDPE) with enhanced anti-drop, optical, mechanical, thermal and water vapor barrier properties by introducing organophilic layered double hydroxides (OLDHs) nanosheets. OLDHs loadings were varied from 0–6 wt.%. Structural analyses using the Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) indicated that the OLDHs nanosheets were homogeneously dispersed with an ordered alignment in the LLDPE matrix. The LLDPE film containing 2 wt.% OLDHs (denoted as OLDHs-2) showed the optimal mechanical, thermal and water vapor barrier properties, whilst the anti-drop and optical performance of the films improved with increasing OLDHs content. The enhanced antidrop properties of the composite films relative to pristine LLDPE can be expected to effectively reduce agricultural losses to disease when the films are applied as agricultural films, whilst the superior light transmittance and water-retaining properties of the composite films will boost agricultural production. Results presented suggest that multifunctional LLDPE/OLDHs nanocomposites show great promise as low cost agricultural plastic films.
Collapse
Affiliation(s)
- Jiazhuo Xie
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Haijun Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China
| | - Zhou Wang
- State Key Laboratory of Nutrition Resources Integrated Utilization, Shandong Kingenta Ecological Engineering Co., Ltd., Linshu, 276700, China
| | - Qinghua Zhao
- Department of Basic Courses, Shandong Medicine Technician College, Tai'an, 271000, China
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China.,School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Lei Hao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China
| | - Zihao Xiao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
8
|
Enhanced enzymatic degradation in nanocomposites of various organically-modified layered zinc phenylphosphonates and poly (butylene succinate-co-adipate). JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1373-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Xie J, Zhang K, Wang Z, Zhao Q, Yang Y, Zhang Y, Ai S, Xu J. Biodegradable poly(vinyl alcohol)-based nanocomposite film reinforced with organophilic layered double hydroxides with potential packaging application. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0561-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
He CR, Lee MC, Kuo YY, Wu TM, Li SY. The influence of support structures on cell immobilization and acetone–butanol–ethanol (ABE) fermentation performance. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Chen YA, Tsai GS, Chen EC, Wu TM. Thermal degradation behaviors and biodegradability of novel nanocomposites based on various poly[(butylene succinate)-co-adipate] and modified layered double hydroxides. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Hsiao LJ, Lin JH, Sankatumvong P, Wu TM, Li SY. The Feasibility of Thermophilic Caldimonas manganoxidans as a Platform for Efficient PHB Production. Appl Biochem Biotechnol 2016; 180:852-871. [PMID: 27230570 DOI: 10.1007/s12010-016-2138-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022]
Abstract
Recently, poly(3-hydroxybutyrate) (PHB) has been found in a few thermophilic strains where several advantages can be gained from running fermentation at high temperatures. Caldimonas manganoxidans, a thermophilic gram-negative bacterium, was investigated for the feasibility as a PHB-producing strain. It is suggested that the best fermentation strategy for achieving the highest PHB concentration of 5.4 ± 1.1 g/L (from 20 g/L glucose) in 24 h is to use the fermentation conditions that are favored for the bacterial growth, yet temperature and pH should be chosen at conditions that are favored for the PHB content. Besides, the above fermentation conditions produce PHB that has a high molecular weight of 1274 kDa with a low polydispersity index (PDI) of 1.45, where the highest Mw of PHB of 1399 kDa (PDI of 1.32) is obtained in this study. To the best knowledge of authors, C. manganoxidans has the best PHB productivity among the thermophiles and is comparable to those common PHB-producing mesophiles.
Collapse
Affiliation(s)
- Li-Jung Hsiao
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ji-Hong Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Pantitra Sankatumvong
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzong-Ming Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
13
|
Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol 2016; 89:161-74. [PMID: 27126172 DOI: 10.1016/j.ijbiomac.2016.04.069] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 02/02/2023]
Abstract
Traditional mineral oil based plastics are important commodity to enhance the comfort and quality of life but the accumulation of these plastics in the environment has become a major universal problem due to their low biodegradation. Solution to the plastic waste management includes incineration, recycling and landfill disposal methods. These processes are very time consuming and expensive. Biopolymers are important alternatives to the petroleum-based plastics due to environment friendly manufacturing processes, biodegradability and biocompatibility. Therefore use of novel biopolymers, such as polylactide, polysaccharides, aliphatic polyesters and polyhydroxyalkanoates is of interest. PHAs are biodegradable polyesters of hydroxyalkanoates (HA) produced from renewable resources by using microorganisms as intracellular carbon and energy storage compounds. Even though PHAs are promising candidate for biodegradable polymers, however, the production cost limit their application on an industrial scale. This article provides an overview of various substrates, microorganisms for the economical production of PHAs and its copolymers. Recent advances in PHAs to reduce the cost and to improve the performance of PHAs have also been discussed.
Collapse
Affiliation(s)
- Anbreen Anjum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| |
Collapse
|
14
|
Chen YA, Hang YT, Wu TM. Polymorphism and spherulite morphology of poly(1,4-butylene adipate)/organically-modified layered double hydroxide nanocomposites. J Appl Polym Sci 2015. [DOI: 10.1002/app.42526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi-An Chen
- Department of Materials Science and Engineering; National Chung Hsing University; 250 Kuo Kuang Road Taichung Taiwan 402
| | - Yi-Tong Hang
- Department of Materials Science and Engineering; National Chung Hsing University; 250 Kuo Kuang Road Taichung Taiwan 402
| | - Tzong-Ming Wu
- Department of Materials Science and Engineering; National Chung Hsing University; 250 Kuo Kuang Road Taichung Taiwan 402
| |
Collapse
|
15
|
Gao Z, Ma M, Zhai X, Zhang M, Zang D, Wang C. Improvement of chemical stability and durability of superhydrophobic wood surface via a film of TiO2coated CaCO3micro-/nano-composite particles. RSC Adv 2015. [DOI: 10.1039/c5ra04000k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Images of water droplets on (a) pristine wood, (b) wood covered with composite particles, (c) wood modified with stearic acid, and (d) superhydrophobic wood.
Collapse
Affiliation(s)
- Zhengxin Gao
- Key Laboratory of Bio-Based Material Science and Technology
- Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
| | - Miaolian Ma
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Xianglin Zhai
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | - Ming Zhang
- Key Laboratory of Bio-Based Material Science and Technology
- Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
| | - Deli Zang
- Key Laboratory of Bio-Based Material Science and Technology
- Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
| | - Chengyu Wang
- Key Laboratory of Bio-Based Material Science and Technology
- Ministry of Education
- Northeast Forestry University
- Harbin 150040
- China
| |
Collapse
|