1
|
Celik N, Sahin F, Ruzi M, Ceylan A, Butt HJ, Onses MS. Mechanochemical Activation of Silicone for Large-Scale Fabrication of Anti-Biofouling Liquid-like Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54060-54072. [PMID: 37953492 DOI: 10.1021/acsami.3c11352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Large-scale preparation of liquid-like coatings with perfect transparency via solventless and room-temperature processes using low-cost and biocompatible materials is of tremendous interest for a broad range of applications. Here, we present a mechanochemical activation strategy for solventless grafting of poly(dimethylsiloxane) (PDMS) onto glass, silicon wafers, and ceramics. Activation is achieved via ball milling PDMS without using any solvents or additives prior to application. Ball milling results in chain scission and generation of free radicals, allowing room-temperature grafting at durations ≤1 h. The deposition of ball-milled PDMS can be facilitated by brushing or drop-casting, enabling large-scale applications. The resulting surfaces facilitate the sliding of droplets at angles <20° for liquids with surface tension ranging from 22 to 73 mN/m. An important application for public health is generating anti-biofouling coatings on sanitary ware. For example, PDMS-grafted surfaces prepared on a regular-size toilet bowl exhibit a 105-fold decrease in the attachment of bacteria from urine. These findings highlight the significant potential of mechanochemical processes for the practical preparation of liquid-like surfaces.
Collapse
Affiliation(s)
- Nusret Celik
- ERNAM─Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
- Department of Materials Science and Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Furkan Sahin
- ERNAM─Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, 34398 Istanbul, Turkey
| | - Mahmut Ruzi
- ERNAM─Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
| | - Ahmet Ceylan
- Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Mustafa Serdar Onses
- ERNAM─Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
- Department of Materials Science and Engineering, Erciyes University, 38039 Kayseri, Turkey
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer Nanocomposite Dielectrics: Understanding the Matrix/Particle Interface. ACS NANO 2022; 16:13612-13656. [PMID: 36107156 DOI: 10.1021/acsnano.2c07404] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer nanocomposite dielectrics possess exceptional electric properties that are absent in the pristine dielectric polymers. The matrix/particle interface in polymer nanocomposite dielectrics is suggested to play decisive roles on the bulk material performance. Herein, we present a critical overview of recent research advances and important insights in understanding the matrix/particle interfacial characteristics in polymer nanocomposite dielectrics. The primary experimental strategies and state-of-the-art characterization techniques for resolving the local property-structure correlation of the matrix/particle interface are dissected in depth, with a focus on the characterization capabilities of each strategy or technique that other approaches cannot compete with. Limitations to each of the experimental strategy are evaluated as well. In the last section of this Review, we summarize and compare the three experimental strategies from multiple aspects and point out their advantages and disadvantages, critical issues, and possible experimental schemes to be established. Finally, the authors' personal viewpoints regarding the challenges of the existing experimental strategies are presented, and potential directions for the interface study are proposed for future research.
Collapse
Affiliation(s)
- Shaojie Wang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Luo
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajie Liang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Hu
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinliang He
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Li
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Sakib N, Koh YP, Simon SL. The absolute heat capacity of polymer grafted nanoparticles using fast scanning calorimetry*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nazam Sakib
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Yung P. Koh
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | - Sindee L. Simon
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
4
|
Klonos PA, Terzopoulou Z, Zamboulis A, Valera MÁ, Mangas A, Kyritsis A, Pissis P, Bikiaris DN. Direct and indirect effects on molecular mobility in renewable polylactide-poly(propylene adipate) block copolymers as studied via dielectric spectroscopy and calorimetry. SOFT MATTER 2022; 18:3725-3737. [PMID: 35503564 DOI: 10.1039/d2sm00261b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we study a series of sustainable block copolymers based on polylactide, PLA, and poly(propylene adipate), PPAd, both polymers being prepared from renewable resources. Envisaging a wide range of future applications in the frame of a green and circular economy, e.g., packaging materials replacing conventional petrochemicals, the employment of PPAd aims at lowering the glass transition and melting temperatures of PLA and, finally, facilitation of the enzymatic degradation and compostability. The copolymers have been synthesized via ring opening polymerization of lactides in the presence of propylene adipate oligomers (5, 15 and 25%). The direct effects on the molecular mobility by the structure/composition are assessed in the amorphous state employing broadband dielectric spectroscopy (BDS) and calorimetry. BDS allowed the recording of local PLA and PPAd dynamics in all cases. The effects on local relaxations suggest favoring of interchain interactions, both PLA-PPAd and PPAd-PPAd. Regarding the more important segmental dynamics, the presence of PPAd leads to faster polymer chain diffusion, as monitored by the significant lowering of the dielectric and calorimetric glass transition temperature, Tg. This suggests the plasticizing role of PPAd on PLA (majority) in combination with the lowering of the average molar mass, Mn, in the copolymers from ∼75 to ∼30 kg mol-1, which is the actual scope for the synthesis of these materials. Interestingly, a strong suppression in fragility (chain cooperativity) is additionally recorded. In contrast to calorimetry and due to the high resolving power of BDS, for the higher PPAd fraction, the weak segmental relaxation of PPAd was additionally recorded. Overall, the recordings suggest a strong increase in free volume and two individual dynamic states, one for 0 and 5% PPAd and another for 15 and 25% PPAd. Within the latter, we gained indications for partial phase nano-separation of PPAd. Regarding indirect effects, these were followed via crystallization. Independent of the method of crystallization, namely, melt or cold, the presence of PPAd led to the systematic lowering of crystallization and melting temperatures and enthalpies. The effects reflect the decrease of crystalline nuclei, which is confirmed by optical microscopy as in the copolymers fewer although larger crystals are formed.
Collapse
Affiliation(s)
- Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Miguel Ángel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
5
|
Yu Y, Zhao Y, Huang B, Ji Y, Zhao Y, Zhang Z, Fei HF. Effect of phenyl side groups on the dielectric properties and dielectric behavior of polysiloxane. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Ghorbel N, Raihane M, Lahcini M, Kallel A. Interfacial characteristics of poly(ε‐caprolactone)‐
grafted
‐halloysites nanotubes bionanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mustapha Raihane
- IMED‐Lab, Faculty of Sciences and Techniques Cadi Ayyad University Marrakech Morocco
| | - Mohammed Lahcini
- IMED‐Lab, Faculty of Sciences and Techniques Cadi Ayyad University Marrakech Morocco
- Mohammed VI Polytechnic University Ben Guerir Morocco
| | - Ali Kallel
- LaMaCOP, Faculty of sciences of Sfax Sfax Tunisia
| |
Collapse
|
7
|
Interfacial phenomena and molecular dynamics in core-shell-type nanocomposites based on polydimethylsiloxane and fumed silica: Comparison between impregnation and the new mechano-sorption modification as preparation methods. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Klonos PA, Papadopoulos L, Terzopoulou Z, Papageorgiou GZ, Kyritsis A, Bikiaris DN. Molecular Dynamics in Nanocomposites Based on Renewable Poly(butylene 2,5-furan-dicarboxylate) In Situ Reinforced by Montmorillonite Nanoclays: Effects of Clay Modification, Crystallization, and Hydration. J Phys Chem B 2020; 124:7306-7317. [PMID: 32786716 DOI: 10.1021/acs.jpcb.0c04306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study deals with poly(butylene 2,5-furan-dicarboxylate), PBF, a renewable bio-based polyester expected to replace non-eco-friendly fossil-based homologues. PBF exhibits excellent gas barrier properties, which makes it promising for packaging applications; however, its rather low and slow crystallinity affects good mechanical performance. The crystallization of this relatively new polymer is enhanced here via reinforcement by introduction in situ of 1 wt % montmorillonite, MMT, nanoclays of three types (functionalizations). We study PBF and its nanocomposites (PNCs) also from the basic research point of view, molecular dynamics. For this work, we employ the widely used combination of techniques, differential scanning calorimetry (DSC) with broad-band dielectric relaxation spectroscopy (BDS), supplemented by polarized light microscopy (PLM) and thermogravimetric analysis (TGA). In the PNCs, the crystalline rate and fraction, CF, were found to be strongly enhanced as these fillers act as additional crystallization nuclei. The improvements in crystallization here correlate quite well with those on the mechanical performance recorded recently; moreover, they occur in the same filler order, in particular, with increasing MMT interlayer distance (from ∼1 to ∼3 nm). In the amorphous fraction of the polymer, the chain diffusion (calorimetric Tg and dynamic α process) is easier in the PNCs due to their slightly smaller length, while in the semicrystalline state, it decelerates by crystal-induced constraints. The local polymer dynamics (β process, below Tg) was found to be independent of the PNC composition, however, sensitive to structural changes of the matrix. Finally, a filler-induced dynamics was additionally recorded in the PNCs (α* process), arising possibly from the polymer located at the MMT surfaces. α* follows the changes in polymer chain length and decelerates with crystallization, whereas its activation energy decreases with mild hydration. The combined results on α* with the DSC and TGA findings, provide proof for weak MMT-PBF interactions. Overall, our results, along with data from the literature, suggest that such furan-based polyesters reinforced with properly chosen nanofillers could potentially serve well as tailor-made PNCs for targeted applications.
Collapse
Affiliation(s)
- Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.,Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece
| | - Lazaros Papadopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Papageorgiou
- Laboratory of Industrial and Food Chemistry, Chemistry Department, University of Ioannina, 451 10 Ioannina, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
9
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Sanusi OM, Papadopoulos L, Klonos PA, Terzopoulou Z, Hocine NA, Benelfellah A, Papageorgiou GZ, Kyritsis A, Bikiaris DN. Calorimetric and Dielectric Study of Renewable Poly(hexylene 2,5-furan-dicarboxylate)-Based Nanocomposites In Situ Filled with Small Amounts of Graphene Platelets and Silica Nanoparticles. Polymers (Basel) 2020; 12:E1239. [PMID: 32485937 PMCID: PMC7362010 DOI: 10.3390/polym12061239] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
Poly(hexylene 2,5 furan-dicarboxylate) (PHF) is a relatively new biobased polyester prepared from renewable resources, which is targeted for use in food packaging applications, owing to its great mechanical and gas barrier performance. Since both properties are strongly connected to crystallinity, the latter is enhanced here by the in situ introduction in PHF of graphene nanoplatelets and fumed silica nanoparticles, as well as mixtures of both, at low amounts. For this investigation, we employed Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and dielectric spectroscopy (BDS). The fillers were found to improve crystallization in both the rate (increasing Tc) and fraction (CF), which was rationalized via the concept of fillers acting as crystallization agents. This action was found stronger in the case of graphene as compared to silica. BDS allowed the detection of local and segmental dynamics, in particular in PHF for the first time. The glass transition dynamics in both BDS (α relaxation) and DSC (Tg) are mainly dominated by the relatively high CF, whereas in the PHF filled uniquely with silica strong spatial confinement effects due to crystals were revealed. Finally, all samples demonstrated the segmental-like dynamics above Tg, which screens the global chain dynamics (normal mode).
Collapse
Affiliation(s)
- Olawale Monsur Sanusi
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| | - Panagiotis A. Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| | - Nourredine Aït Hocine
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
| | - Abdelkibir Benelfellah
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
- DRII, IPSA, 63 Boulevard de Brandebourg, 94200 Ivry-Sur-Seine, France
| | - George Z. Papageorgiou
- Laboratory of Industrial and Food chemistry, Chemistry Department, University of Ioannina, 45110 Ioannina, Greece;
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| |
Collapse
|
11
|
Klonos PA, Goncharuk OV, Pakhlov EM, Sternik D, Deryło-Marczewska A, Kyritsis A, Gun’ko VM, Pissis P. Morphology, Molecular Dynamics, and Interfacial Phenomena in Systems Based on Silica Modified by Grafting Polydimethylsiloxane Chains and Physically Adsorbed Polydimethylsiloxane. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Olena V. Goncharuk
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Eugeniy M. Pakhlov
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Dariusz Sternik
- Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | | | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Volodymyr M. Gun’ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
12
|
Klonos PA. Crystallization, glass transition, and molecular dynamics in PDMS of low molecular weights: A calorimetric and dielectric study. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Klonos P, Bolbukh Y, Koutsiara C, Zafeiris K, Kalogeri O, Sternik D, Deryło–Marczewska A, Tertykh V, Pissis P. Morphology and molecular dynamics investigation of low molecular weight PDMS adsorbed onto Stöber, fumed, and sol-gel silica nanoparticles. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Klonos P, Sulym IY, Sternik D, Konstantinou P, Goncharuk OV, Deryło–Marczewska A, Gun'ko VM, Kyritsis A, Pissis P. Morphology, crystallization and rigid amorphous fraction in PDMS adsorbed onto carbon nanotubes and graphite. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Sulym I, Goncharuk O, Sternik D, Terpilowski K, Derylo-Marczewska A, Borysenko MV, Gun’ko VM. Nanooxide/Polymer Composites with Silica@PDMS and Ceria-Zirconia-Silica@PDMS: Textural, Morphological, and Hydrophilic/Hydrophobic Features. NANOSCALE RESEARCH LETTERS 2017; 12:152. [PMID: 28249372 PMCID: PMC5328891 DOI: 10.1186/s11671-017-1935-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
SiO2@PDMS and CeO2-ZrO2-SiO2@PDMS nanocomposites were prepared and studied using nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), measurements of advancing and receding contact angles with water, and microcalorimetry. The pore size distributions indicate that the textural characteristics change after oxide modification by poly(dimethylsiloxane) (PDMS). Composites are characterized by mainly mesoporosity and macroporosity of aggregates of oxide nanoparticles or oxide@PDMS nanoparticles and their agglomerates. The FT-IR spectra show that PDMS molecules cover well the oxide surface, since the intensity of the band of free silanols at 3748 cm-1 decreases with increasing PDMS concentration and it is absent in the IR spectrum at C PDMS ≥ 20 wt% that occurs due to the hydrogen bonding of the PDMS molecules to the surface hydroxyls. SEM images reveal that the inter-particle voids are gradually filled and aggregates are re-arranged and increase from 20 to 200 nm in size with the increasing polymer concentration. The highest hydrophobicity (contact angle θ = 140° at C PDMS = 20-40 wt%) is obtained for the CeO2-ZrO2-SiO2@PDMS nanocomposites. The heat of composite immersion in water shows a tendency to decrease with increasing PDMS concentration.
Collapse
Affiliation(s)
- Iryna Sulym
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Olena Goncharuk
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Dariusz Sternik
- Department of Physicochemistry of Solid Surface, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Konrad Terpilowski
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Anna Derylo-Marczewska
- Department of Physicochemistry of Solid Surface, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Mykola V. Borysenko
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Vladimir M. Gun’ko
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, 17 General Naumov Street, 03164 Kiev, Ukraine
| |
Collapse
|
16
|
Zhao W, Su Y, Müller AJ, Gao X, Wang D. Direct Relationship Between Interfacial Microstructure and Confined Crystallization in Poly(Ethylene Oxide)/Silica Composites: The Study of Polymer Molecular Weight Effects. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weiwei Zhao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yunlan Su
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department; Faculty of Chemistry, University of the Basque Country UPV/EHU; Paseo Manuel de Lardizabal 3, Donostia-San Sebastia'n 20018 Spain
- IKERBASQUE, Basque Foundation for Science; Bilbao Spain
| | - Xia Gao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
17
|
Massa CA, Pizzanelli S, Bercu V, Pardi L, Leporini D. Local Reversible Melting in Semicrystalline Poly(dimethylsiloxane): A High-Field Electron Paramagnetic Resonance Study. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Carlo Andrea Massa
- Istituto per i
Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche (IPCF-CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | - Silvia Pizzanelli
- Istituto di Chimica
dei Composti OrganoMetallici-Consiglio Nazionale delle Ricerche (ICCOM-CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | - Vasile Bercu
- Department
of Physics, University of Bucharest, Str. Atomistilor 405, Magurele,
Jud. Ilfov, Bucharest RO-077125, Romania
| | - Luca Pardi
- Istituto per i
Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche (IPCF-CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | - Dino Leporini
- Istituto per i
Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche (IPCF-CNR), via G. Moruzzi 1, 56124 Pisa, Italy
- Dipartimento
di Fisica “Enrico Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
| |
Collapse
|
18
|
You Y, Du X, Mao H, Tang X, Wei R, Liu X. Synergistic enhancement of mechanical, crystalline and dielectric properties of polyarylene ether nitrile-based nanocomposites by unidirectional hot stretching-quenching. POLYM INT 2017. [DOI: 10.1002/pi.5369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yong You
- Research Branch of Advanced Functional Materials, School of Microelectronics and Solid-State Electronics; University of Electronic Science and Technology of China; Chengdu China
| | - Xuanyi Du
- Research Branch of Advanced Functional Materials, School of Microelectronics and Solid-State Electronics; University of Electronic Science and Technology of China; Chengdu China
| | - Hua Mao
- Research Branch of Advanced Functional Materials, School of Microelectronics and Solid-State Electronics; University of Electronic Science and Technology of China; Chengdu China
| | - Xiaohe Tang
- Research Branch of Advanced Functional Materials, School of Microelectronics and Solid-State Electronics; University of Electronic Science and Technology of China; Chengdu China
| | - Renbo Wei
- Research Branch of Advanced Functional Materials, School of Microelectronics and Solid-State Electronics; University of Electronic Science and Technology of China; Chengdu China
| | - Xiaobo Liu
- Research Branch of Advanced Functional Materials, School of Microelectronics and Solid-State Electronics; University of Electronic Science and Technology of China; Chengdu China
| |
Collapse
|
19
|
Klonos P, Kyritsis A, Bokobza L, Gun’ko VM, Pissis P. Interfacial effects in PDMS/titania nanocomposites studied by thermal and dielectric techniques. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Klonos P, Pissis P. Effects of interfacial interactions and of crystallization on rigid amorphous fraction and molecular dynamics in polylactide/silica nanocomposites: A methodological approach. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Klonos P, Kulyk K, Borysenko MV, Gun’ko VM, Kyritsis A, Pissis P. Effects of Molecular Weight below the Entanglement Threshold on Interfacial Nanoparticles/Polymer Dynamics. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01931] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Panagiotis Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Kostiantyn Kulyk
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mykola V. Borysenko
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Street, Kiev 03164, Ukraine
| | - Vladimir M. Gun’ko
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Street, Kiev 03164, Ukraine
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
22
|
Klonos P, Terzopoulou Z, Koutsoumpis S, Zidropoulos S, Kripotou S, Papageorgiou GZ, Bikiaris DN, Kyritsis A, Pissis P. Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(l–lactic acid) and nano-inclusions of 1–3D geometry studied by thermal and dielectric techniques. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Klonos P, Kyritsis A, Pissis P. Interfacial and confined dynamics of PDMS adsorbed at the interfaces and in the pores of silica–gel: Effects of surface modification and thermal annealing. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Morphology and molecular dynamics investigation of PDMS adsorbed on titania nanoparticles: Effects of polymer molecular weight. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Interfacial dynamics of polydimethylsiloxane adsorbed on fumed metal oxide particles of a wide range of specific surface area. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|