1
|
Ali SM, Sk S, Sarkar S, Das S, Sepay N, Molla MR. Entropically and enthalpically driven self-assembly of a naphthalimide-based luminescent organic π-amphiphile in water. SOFT MATTER 2024. [PMID: 39444369 DOI: 10.1039/d4sm00986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The self-assembly of π conjugated systems in water has emerged as an efficient method for the development of functional materials for biological applications. But the process is more difficult to understand and to control in water compared to organic solvents due to hydrophobic effects. For π-conjugated molecules, self-assembly in solution generally occurs due to either an enthalpic or entropic gain, but designing π systems that undergo self-assembly via both an entropically and enthalpically favorable process is challenging. Herein, we elucidate in detail the self-assembly of a luminescent naphthalene monoamide-based dipolar π-bolaamphiphile appended with a primary amine and triethylene glycol monomethyl ether (NMI-W) side chain into a vesicular nanostructure. By utilizing a detailed isothermal titration calorimetry (ITC) experiment, we have calculated the thermodynamic parameters associated with the self-assembly of NMI-W in water. Interestingly, the NMI-W shows both entropically and enthalpically favorable robust self-assembly into a vesicular structure, which can encapsulate both hydrophilic and hydrophobic guest molecules. The synergistic effect of dipole-dipole, π-π stacking and hydrophobic interactions of the NMI chromophore is found to be very crucial in driving self-assembly in an aqueous medium as revealed by various experiments and molecular dynamics.
Collapse
Affiliation(s)
- Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Sujauddin Sk
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Shuvajyoti Sarkar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Sayani Das
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, P-1/2, Suhrawardy Ave, 700017, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Bala IA, Nicolescu A, Georgescu F, Dumitrascu F, Airinei A, Tigoianu R, Georgescu E, Constantinescu-Aruxandei D, Oancea F, Deleanu C. Synthesis and Biological Properties of Fluorescent Strigolactone Mimics Derived from 1,8-Naphthalimide. Molecules 2024; 29:2283. [PMID: 38792143 PMCID: PMC11124091 DOI: 10.3390/molecules29102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Strigolactones (SLs) have potential to be used in sustainable agriculture to mitigate various stresses that plants have to deal with. The natural SLs, as well as the synthetic analogs, are difficult to obtain in sufficient amounts for practical applications. At the same time, fluorescent SLs would be useful for the mechanistic understanding of their effects based on bio-imaging or spectroscopic techniques. In this study, new fluorescent SL mimics containing a substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive furan-2-one moiety were prepared. The structural, spectroscopic, and biological activity of the new SL mimics on phytopathogens were investigated and compared with previously synthetized fluorescent SL mimics. The chemical group at the C-6 position of the naphthalimide ring influences the fluorescence parameters. All SL mimics showed effects similar to GR24 on phytopathogens, indicating their suitability for practical applications. The pattern of the biological activity depended on the fungal species, SL mimic and concentration, and hyphal order. This dependence is probably related to the specificity of each fungal receptor-SL mimic interaction, which will have to be analyzed in-depth. Based on the biological properties and spectroscopic particularities, one SL mimic could be a good candidate for microscopic and spectroscopic investigations.
Collapse
Affiliation(s)
- Ioana-Alexandra Bala
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Alina Nicolescu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | | | - Florea Dumitrascu
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| | - Anton Airinei
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
| | - Radu Tigoianu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
| | - Emilian Georgescu
- Research Center Oltchim, St. Uzinei 1, 240050 Ramnicu Valcea, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
| | - Florin Oancea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței Nr. 202, Sector 6, 060021 Bucharest, Romania;
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania
| | - Calin Deleanu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda Nr. 41-A, 700487 Iaşi, Romania; (A.N.); (A.A.); (R.T.)
- “Costin D. Nenițescu” Institute of Organic and Supramolecular Chemistry, Romanian Academy, Splaiul Independentei Nr. 202B, Sector 6, 060023 Bucharest, Romania;
| |
Collapse
|
3
|
Ali SM, Sk S, Sepay N, Molla MR. Entropy-Enthalpy Compensation in Solvent Geometry Regulated Supramolecular Polymerization of Luminescent Napthalimide via a Non-Cooperative, Isodesmic Mechanism. Chemistry 2023:e202303587. [PMID: 38031526 DOI: 10.1002/chem.202303587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Supramolecular polymers of π-conjugated systems are an important class of materials with fascinating functions and properties originated from the dynamic behavior and highly ordered molecular organizations. Here, a donor-π-acceptor based functionalized luminescent napthalene monoimide (NMI) undergoes J-type self-assembly by non-covalent interactions via a non-cooperative, isodesmic mechanism to form supramolecular 1D nanowire. The fundamental insights into the thermodynamics regulating the supramolecular polymerization were derived through the fitting of the isodesmic model to variable temperature UV/Vis data in linear (dodecane) and nonliner hydrocarbon (decalin) based solvents. This shows a significant role of entropy-enthalpy compensation in solvent geometry-regulated formation and stabilization of supramolecular polymer. Furthermore, we have quantitively estimated the influence of solvent geometry and found that NMI forms stronger self-assembly and spontaneous gel in linear hydrocarbon based solvent compared to nonliner one and thereby substantially increases the degree of polymerization in linear hydrocarbon solvent (dodecane). This is accredited to the effective influence of the linear hydrocarbon solvent molecules in the polymerization process by favourable van der waals interactions with the peripheral alkyl chains of the NMI monomers in contrast to unfavourable interaction of nonliner hydrocarbon solvent due to geometry mismatch.
Collapse
Affiliation(s)
- Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 A. P. C. Roy, Kolkata, India-, 700009
| | - Sujauddin Sk
- Department of Chemistry, University of Calcutta, 92 A. P. C. Roy, Kolkata, India-, 700009
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, India-, 700017
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Roy, Kolkata, India-, 700009
| |
Collapse
|
4
|
Ali SM, Sk S, Sengupta A, Santra S, Barman S, Sepay N, Molla MR. Anion-assisted supramolecular polymerization of luminescent organic π-conjugated chromophores in a moderately polar solvent: tunable nanostructures and their corresponding effects on electronic properties. NANOSCALE 2023; 15:14866-14876. [PMID: 37646513 DOI: 10.1039/d3nr04090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Supramolecular polymers of π-conjugated organic chromophores have emerged as promising candidates in organic electronics because of their dynamic and highly ordered molecular organization. Herein, we demonstrate the formation of luminescent, highly conducting supramolecular polymers of a functionalized naphthalimide π-chromophore-based organic semiconductor in a moderately polar organic solvent (tetrahydrofuran) by overcoming solute-solvent H-bonding via assistance from fluoride anions. The polymerization is exclusively guided by the synergistic effects of cascade H-bonding (F-⋯H-N- of primary amines, followed by -CO⋯H-N- of amides), π-π stacking and hydrophobic interactions. An increasing molar equivalent of anions leads to a morphology transition from 1D nanowires to 2D nanosheets via nanotubes and nanorings, but above a particular threshold of the same anion, depolymerization-mediated disruption of long-range order and formation of non-luminescent spherical particles was observed. Such significant impacts of anions in supramolecular polymerization-depolymerization were utilized in modulating the electronic properties of this naphthalimide-based organic semiconductor.
Collapse
Affiliation(s)
- Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal-700009, India.
| | - Sujauddin Sk
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal-700009, India.
| | - Ankita Sengupta
- Department of Electronic Science, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal-700009, India
| | - Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal-700009, India.
| | - Souvik Barman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal-700009, India.
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, P-1/2, Suhrawardy Ave, Kolkata, West Bengal-700017, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal-700009, India.
| |
Collapse
|
5
|
A multi-channel rhodamine-pyrazole based chemosensor for sensing pH, Cu2+, CN– and Ba2+ and its function as a digital comparator. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Ali SM, Santra S, Mondal A, Kolay S, Roy L, Molla MR. Luminescence property switching in 1D supramolecular polymerization of organic donor–π-acceptor chromophores. Polym Chem 2022. [DOI: 10.1039/d1py01417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The naphthalene monoimide building block endows with amide functionality undergoes supramolecular polymerization in a J type fashion in a particular co-solvent composition. This leads to luminescent property switching as a result of PET effect.
Collapse
Affiliation(s)
- Sk. Mursed Ali
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Subrata Santra
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Soumya Kolay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar – 751013, India
| | | |
Collapse
|
7
|
Bosch P, Staneva D, Vasileva-Tonkova E, Grozdanov P, Nikolova I, Kukeva R, Stoyanova R, Grabchev I. Hyperbranched Polymers Modified with Dansyl Units and Their Cu(II) Complexes. Bioactivity Studies. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13204574. [PMID: 33066584 PMCID: PMC7602284 DOI: 10.3390/ma13204574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 05/15/2023]
Abstract
Two new copper complexes of hyperbranched polymers modified with dansyl units were synthesized and characterized by infrared spectroscopy (IR) and electron paramagnetic resonance (EPR) techniques. It was found that copper ions coordinate predominantly with nitrogen or oxygen atoms of the polymer molecule. The place of the formation of complexes and the number of copper ions involved depend on the chemical structure of the polymer. The antimicrobial activity of the new polymers and their Cu(II) complexes was tested against Gram-negative and Gram-positive bacterial and fungal strains. Copper complexes were found to have activity better than that of the corresponding ligands. The deposition of the modified branched polymers onto cotton fabrics prevents the formation of bacterial biofilms, which indicates that the studied polymers can find application in antibacterial textiles.
Collapse
Affiliation(s)
- Paula Bosch
- Institute of Science and Technology of Polymers, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Desislava Staneva
- Department of textile and leather, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Evgenia Vasileva-Tonkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Petar Grozdanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Ivanka Nikolova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.K.); (R.S.)
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.K.); (R.S.)
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
8
|
Yordanova-Tomova S, Cheshmedzhieva D, Stoyanov S, Dudev T, Grabchev I. Synthesis, Photophysical Characterization, and Sensor Activity of New 1,8-Naphthalimide Derivatives. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20143892. [PMID: 32668630 PMCID: PMC7411986 DOI: 10.3390/s20143892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Three new 1,8-naphthalimide derivatives M1-M3 with different substituents at the C-4 position have been synthesized and characterized. Their photophysical properties have been investigated in organic solvents of different polarity, and their fluorescence intensity was found to depend strongly on both the polarity of the solvents and the type of substituent at C-4. For compounds M1 and M2 having a tertiary amino group linked via an ethylene bridge to the chromophore system, high quantum yield was observed only in non-polar media, whereas for compound M3, the quantum efficiency did not depend on the medium polarity. The effect of different metal ions (Ag+, Ba2+, Cu2+, Co2+, Mg2+, Pb2+, Sr2+, Fe3+, and Sn2+) on the fluorescence emission of compounds M1 and M2 was investigated. A significant enhancement has been observed in the presence of Ag+, Pb2+, Sn2+, Co2+, Fe3+, as this effect is expressed more preferably in the case of M2. Both compounds have shown significant pH dependence, as the fluorescence intensity was low in alkaline medium and has been enhanced more than 20-fold in acidic medium. The metal ions and pH do not affect the fluorescence intensity of M3. Density-functional theory (DFT) and Time-dependent density-functional theory (TDDFT) quantum chemical calculations are employed in deciphering the intimate mechanism of sensor mechanism. The functional properties of M1 and M2 were compared with polyamidoamine (PAMAM) dendrimers of different generations modified with 1,8-naphthalimide.
Collapse
Affiliation(s)
- Stanislava Yordanova-Tomova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Baurchier blvd., 1164 Sofia, Bulgaria; (S.Y.-T.); (D.C.); (S.S.); (T.D.)
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Baurchier blvd., 1164 Sofia, Bulgaria; (S.Y.-T.); (D.C.); (S.S.); (T.D.)
| | - Stanimir Stoyanov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Baurchier blvd., 1164 Sofia, Bulgaria; (S.Y.-T.); (D.C.); (S.S.); (T.D.)
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Baurchier blvd., 1164 Sofia, Bulgaria; (S.Y.-T.); (D.C.); (S.S.); (T.D.)
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1 Koziak str., 1407 Sofia, Bulgaria
| |
Collapse
|
9
|
Oshchepkov A, Oshchepkov M, Kamagurov S, Redchuk A, Oshchepkova M, Popov K, Kataev E. Fluorescence detection of phosphonates in water by a naphthalimide-based receptor and its derived cryopolymers. NEW J CHEM 2020. [DOI: 10.1039/d0nj01734e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concentration of compound M in cryopolymers has a dramatic influence on the fluorescence response in the presence of phosphonates.
Collapse
Affiliation(s)
| | - Maxim Oshchepkov
- JSC “Fine Chemicals R&D Centre”
- 107258 Moscow
- Russian Federation
- Mendeleev University of Chemical Technology of Russia
- 125047 Moscow
| | - Semen Kamagurov
- JSC “Fine Chemicals R&D Centre”
- 107258 Moscow
- Russian Federation
| | - Anatoly Redchuk
- JSC “Fine Chemicals R&D Centre”
- 107258 Moscow
- Russian Federation
| | - Margarita Oshchepkova
- Mendeleev University of Chemical Technology of Russia
- 125047 Moscow
- Russian Federation
| | | | - Evgeny Kataev
- Department of Chemistry and Pharmacy
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| |
Collapse
|
10
|
Zhang L, Xue W, Gu L. Biopeptide Hyperbranched Polyether Assembled from Lactic Acid, Glutamic Acid and Polyethylene Glycol Block Chains for Drug Loading. Macromol Res 2019. [DOI: 10.1007/s13233-019-7146-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Bhat SI, Ahmadi Y, Ahmad S. Recent Advances in Structural Modifications of Hyperbranched Polymers and Their Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01969] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shahidul Islam Bhat
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Younes Ahmadi
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
12
|
Synthesis and spectroscopic properties of a new fluorescent acridine hyperbranched polymer: Applications to acid sensing and as antimicrobial agent. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Adv 2017. [DOI: 10.1039/c6ra27012c] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most recent advances of the synthesis of poly-1,2,3-triazole-based functional materials.
Collapse
Affiliation(s)
- Jingpei Huo
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Huawen Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Zhang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Xiaohong Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
- Department of Chemistry
- University of Oslo
| | - Dongchu Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Jinwen Liu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Guifeng Xiao
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Yang Wang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Zhongliu Wen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| |
Collapse
|