1
|
Giannakas AE, Baikousi M, Karabagias VK, Karageorgou I, Iordanidis G, Emmanouil-Konstantinos C, Leontiou A, Karydis-Messinis A, Zafeiropoulos NE, Kehayias G, Proestos C, Salmas CE. Low-Density Polyethylene-Based Novel Active Packaging Film for Food Shelf-Life Extension via Thyme-Oil Control Release from SBA-15 Nanocarrier. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:423. [PMID: 38470754 DOI: 10.3390/nano14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The use of natural raw substances for food preservation could provide a great contribution to food waste reduction, circular economy enhancement, and green process application widening. Recent studies indicated that the use of porous materials as adsorbents for natural essential oils provided nanohybrids with excellent antioxidant and antimicrobial properties. Following this trend in this work, a thymol oil (TEO) rich SBA-15 nanohybrid was prepared and characterized physiochemically with various techniques. This TEO@SBA-15 nanohybrid, along with the pure SBA-15, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. Results indicated that TEO loading was higher than other porous materials reported recently, and the addition of both pure SBA-15 and TEO@SBA-15 to the LDPE increased the water/oxygen barrier. The film with the higher thyme-oil@SBA-15 nanohybrid content exhibited a slower release kinetic. The antioxidant activity of the final films ignited after 48 h, was in the range of 60-70%, and was almost constant for 7 days. Finally, all tests indicated a sufficient improvement by the addition of thyme-oil@SBA-15 nanohybrids in the pure LDPE matrix and the concentration of wt. 10% of such nanocarriers provided the optimum final LDPE/10TEO@SBE-15 active packaging film. This material could be a potential future product for active packaging applications.
Collapse
Affiliation(s)
- Aris E Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Maria Baikousi
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioanna Karageorgou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - George Iordanidis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | | | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece
| | - Constantinos E Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Belioka MP, Markozanne G, Chrissopoulou K, Achilias DS. Advanced Plastic Waste Recycling-The Effect of Clay on the Morphological and Thermal Behavior of Recycled PET/PLA Sustainable Blends. Polymers (Basel) 2023; 15:3145. [PMID: 37514534 PMCID: PMC10383187 DOI: 10.3390/polym15143145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Bio-based polymers such as poly(lactic acid), PLA, are facing increased use in everyday plastic packaging, imposing challenges in the recycling process of its counterpart polyester poly(ethylene terephthalate), PET. This work presents the exploration of the properties of PET/PLA blends with raw materials obtained from recycled plastics. Several blends were prepared, containing 50 to 90% PET. Moreover, multiscale nanocomposite blends were formed via melt mixing using different amounts and types of nanoclay in order to study their effect on the morphology, surface properties, and thermal stability of the blends. The materials were characterized by X-ray diffraction analysis (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The nanoclay was found to exhibit a uniform dispersion in the polymer matrix, presenting mainly intercalated structures with some exfoliated at low loading and some agglomerates at high loading (i.e., 10%). The addition of nanoclay to PET/PLA matrices increased the roughness of the blends and improved their thermal stability. Thermal degradation of the blends occurs in two steps following those of the individual polymers. Contamination of rPET with rPLA results in materials having poor thermal stability relative to rPET, presenting the onset of thermal degradation at nearly 100 °C lower. Therefore, important information was obtained concerning the recyclability of mixed PET and PLA waste. The perspective is to study the properties and find potential applications of sustainable blends of recycled PET and PLA by also examining the effect of different clays in different loadings. Therefore, useful products could be produced from blends of waste polyester.
Collapse
Affiliation(s)
- Maria-Paraskevi Belioka
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgia Markozanne
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Dimitrios S Achilias
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Tan M, Pan D, Chen S, Yan X, Han L, Li R, Wang J. Synthesis of Coal-Fly-Ash-Based Ordered Mesoporous Materials and Their Adsorption Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2868. [PMID: 37049161 PMCID: PMC10096384 DOI: 10.3390/ma16072868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A feasible approach was developed for the synthesis of ordered mesoporous SBA-15-type materials using coal fly ash (CFA) as raw material. In the proposed approach, CFA was, firstly, activated by subcritical water with the addition of NaOH, which allowed an efficient extraction of silicon species from CFA under strong acidic conditions at near room temperature. Subsequently, in the synthesis system, using silicon extraction solution as the silicon precursor, the introduction of anhydrous ethanol as a co-solvent effectively inhibited the polymerization of silanol species and promoted their collaborative self-assembly with surfactant molecules by enhancing the hydrogen bond interactions. The resultant SBA-15 material had a high purity, high specific surface area (1014 m2/g) and pore volume (1.08 cm3/g), and a highly ordered mesostructure, and, therefore, exhibited an excellent removal efficiency (90.5%) and adsorption capacity (160.8 mg/g) for methylene blue (MB) from simulated wastewater. Additionally, the generation of surface acid sites from the homogenous incorporation of Al atoms onto the mesoporous walls of SBA-15 combined with the perfect retention of the ordered mesostructure endowed the obtained Al-SBA-15 material with a further boost in the removal performance of MB. The MB removal efficiency can reach ~100%, along with a maximum adsorption capacity of 190.1 mg/g.
Collapse
Affiliation(s)
- Miaomiao Tan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dahai Pan
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shuwei Chen
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoliang Yan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lina Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruifeng Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiancheng Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China;
| |
Collapse
|
4
|
Hao T, Wang Y, Liu Z, Li J, Shan L, Wang W, Liu J, Tang J. Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance Polyester Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2810. [PMID: 34835575 PMCID: PMC8622537 DOI: 10.3390/nano11112810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester.
Collapse
Affiliation(s)
- Tian Hao
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Yao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhipeng Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jie Li
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Liangang Shan
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenchao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jixian Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jianguo Tang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Papadopoulos L, Klonos PA, Terzopoulou Z, Psochia E, Sanusi OM, Hocine NA, Benelfellah A, Giliopoulos D, Triantafyllidis K, Kyritsis A, Bikiaris DN. Comparative study of crystallization, semicrystalline morphology, and molecular mobility in nanocomposites based on polylactide and various inclusions at low filler loadings. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Papadopoulos L, Xanthopoulou E, Nikolaidis GN, Zamboulis A, Achilias DS, Papageorgiou GZ, Bikiaris DN. Towards High Molecular Weight Furan-Based Polyesters: Solid State Polymerization Study of Bio-Based Poly(Propylene Furanoate) and Poly(Butylene Furanoate). MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4880. [PMID: 33143165 PMCID: PMC7663070 DOI: 10.3390/ma13214880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
In the era of polymers from renewable resources, polyesters derived from 2,5 furan dicarboxylic acid (FDCA) have received increasing attention due to their outstanding features. To commercialize them, it is necessary to synthesize high molecular weight polymers through efficient and simple methods. In this study, two furan-based polyesters, namely poly (propylene furanoate) (PPF) and poly(butylene furanoate) (PBF), were synthesized with the conventional two-step melt polycondensation, followed by solid-state polycondensation (SSP) conducted at different temperatures and reaction times. Molecular weight, structure and thermal properties were measured for all resultant polyesters. As expected, increasing SSP time and temperature results in polymers with increased intrinsic viscosity (IV), increased molecular weight and reduced carboxyl end-group content. Finally, those results were used to generate a simple mathematical model that prognosticates the time evolution of the materials' IV and end groups concentration during SSP.
Collapse
Affiliation(s)
- Lazaros Papadopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (A.Z.); (D.S.A.)
| | - Eleftheria Xanthopoulou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece; (E.X.); (G.N.N.); (G.Z.P.)
| | - George N. Nikolaidis
- Department of Chemistry, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece; (E.X.); (G.N.N.); (G.Z.P.)
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (A.Z.); (D.S.A.)
| | - Dimitris S. Achilias
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (A.Z.); (D.S.A.)
| | - George Z. Papageorgiou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece; (E.X.); (G.N.N.); (G.Z.P.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (A.Z.); (D.S.A.)
| |
Collapse
|
7
|
Chebbi Y, Kasmi N, Majdoub M, Papageorgiou GZ, Achilias DS, Bikiaris DN. Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, III: Extended Study on Effect of Catalyst Type on Molecular Weight Increase. Polymers (Basel) 2019; 11:E438. [PMID: 30960422 PMCID: PMC6473661 DOI: 10.3390/polym11030438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, the synthesis of poly(ethylene furanoate) (PEF), catalyzed by five different catalysts-antimony acetate (III) (Sb Ac), zirconium (IV) isopropoxide isopropanal (Zr Is Ip), antimony (III) oxide (Sb Ox), zirconium (IV) 2,4-pentanedionate (Zr Pe) and germanium (IV) oxide (Ge Ox)-via an industrially common combination of melt polymerization and subsequent solid-state polymerization (SSP) is presented. In all reactions, proper amounts of 2,5-dimethylfuran-dicarboxylate (DMFD) and ethylene glycol (EG) in a molar ratio of DMFD/EG= 1/2 and 400 ppm of catalyst were used. Polyester samples were subjected to SSP procedure, under vacuum application, at different reaction times (1, 2, 3.5, and 5 h) and temperatures of 190, 200, and 205 °C. Carboxyl end-groups concentration (⁻COOH), intrinsic viscosity (IV), and thermal properties, via differential scanning calorimetry (DSC), were measured for all resultant polymers to study the effect of the used catalysts on the molecular weight increase of PEF during SSP process. As was expected, it was found that with increasing the SSP time and temperature, the intrinsic viscosity and the average molecular weight of PEF steadily increased. In contrast, the number of carboxyl end-groups content showed the opposite trend as intrinsic viscosity, that is, gradually decreasing during SSP time and temperature increase. It is worthy to note that thanks to the SSP process an obvious and continuous enhancement in the thermal properties of the prepared PEF samples was attained, in which their melting temperatures (Tm) and degree of crystallinity (Xc) increase progressively with increasing of reaction time and temperature. To predict the time evolution of polymers IV, as well as the hydroxyl and carboxyl content of PEF polyesters during the SSP, a simple kinetic model was developed. From both the theoretical simulation results and the experimental measurements, it was demonstrated that surely the Zr Is Ip catalyst shows the best catalytic characteristics compared to all other used catalysts herein, that is, leading in reducing-in a spectacular way-the activation energy of the involved both transesterification and esterification reactions during SSP.
Collapse
Affiliation(s)
- Yosra Chebbi
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, Monastir 5000, Tunisia.
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Nejib Kasmi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Mustapha Majdoub
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, Monastir 5000, Tunisia.
| | - George Z Papageorgiou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| | - Dimitris S Achilias
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
8
|
Kasmi N, Papageorgiou GZ, Achilias DS, Bikiaris DN. Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, II: An Efficient and Facile Method to Synthesize High Molecular Weight Polyester Appropriate for Food Packaging Applications. Polymers (Basel) 2018; 10:E471. [PMID: 30966505 PMCID: PMC6415450 DOI: 10.3390/polym10050471] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
The goal of this study was to synthesize, through a facile strategy, high molecular weight poly(ethylene furanoate) (PEF), which could be applicable in food packaging applications. The efficient method to generate PEF with high molecular weight consists of carrying out a first solid-state polycondensation under vacuum for 6 h reaction time at 205 °C for the resulting polymer from two-step melt polycondensation process, which is catalyzed by tetrabutyl titanate (TBT). A remelting step was thereafter applied for 15 min at 250 °C for the obtained polyester. Thus, the PEF sample was ground into powder, and was then crystallized for 6 h at 170 °C. This polyester is then submitted to a second solid-state polycondensation (SSP) carried out at different reaction times (1, 2, 3.5, and 5 h) and temperatures 190, 200, and 205 °C, under vacuum. Ultimately, a significant increase in intrinsic viscosity is observed with only 5 h reaction time at 205 °C during the second SSP being needed to obtain very high molecular weight PEF polymer greater than 1 dL/g, which sufficient for manufacturing purposes. Intrinsic viscosity (IV), carboxyl end-group content (⁻COOH), and thermal properties, via differential scanning calorimetry (DSC), were measured for all resultant polyesters. Thanks to the post-polymerization process, DSC results showed that the melting temperatures of the prepared PEF samples were steadily enhanced in an obvious way as a function of reaction time and temperature increase. It was revealed, as was expected for all SSP samples, that the intrinsic viscosity and the average molecular weight of PEF polyester increased with increasing SSP time and temperature, whereas the number of carboxyl end-group concentration was decreased. A simple kinetic model was also developed and used to predict the time evolution of polyesters IV, as well as the carboxyl and hydroxyl end-groups of PEF during the SSP.
Collapse
Affiliation(s)
- Nejib Kasmi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece.
| | - George Z Papageorgiou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| | - Dimitris S Achilias
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece.
| |
Collapse
|
9
|
Kasmi N, Majdoub M, Papageorgiou GZ, Achilias DS, Bikiaris DN. Solid-State Polymerization of Poly(ethylene furanoate) Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase. Polymers (Basel) 2017; 9:polym9110607. [PMID: 30965910 PMCID: PMC6418636 DOI: 10.3390/polym9110607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022] Open
Abstract
In this work, we report the synthesis of poly(ethylene furanoate) (PEF), catalyzed by three different catalysts, namely, titanium (IV) isopropoxide (TIS), tetrabutyltitanate (TBT), and dibutyltin (IV) oxide (DBTO), via the two-stage melt polycondensation method. Solid-state polymerization (SSP) was conducted at different reaction times (1, 2, 3.5, and 5 h) and temperatures 190, 200, and 205 °C, under vacuum. The resultant polymers were analyzed according to their intrinsic viscosity (IV), end groups (⁻COOH), and thermal properties, via differential scanning calorimetry. DSC results showed that the post polymerization process was favorable to enhance the melting point of the prepared PEF samples. As was expected, the intrinsic viscosity and the average molecular weight of PEF increased with the SSP time and temperature, whereas the number of carboxyl end-groups was decreased. A simple kinetic model was also developed and used to predict the time evolution of polymers IV, as well as the carboxyl and hydroxyl content of PEF during the SSP. From both the experimental measurements and the theoretical simulation results it was proved that the presence of the TIS catalyst resulted in higher transesterification kinetic rate constants and higher reaction rates. The activation energies were not much affected by the presence of different catalysts. Finally, using DBTO as a catalyst, the polyesters produced have higher crystallinity, and as a consequence, higher number of inactive carboxyl and hydroxyl groups.
Collapse
Affiliation(s)
- Nejib Kasmi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, 5000 Monastir, Tunisia.
| | - Mustapha Majdoub
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, 5000 Monastir, Tunisia.
| | - George Z Papageorgiou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| | - Dimitris S Achilias
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|