1
|
Zhang S, Li Y, Qiu X, Jiao A, Luo W, Lin X, Zhang X, Zhang Z, Hong J, Cai P, Zhang Y, Wu Y, Gao J, Liu C, Li Y. Incorporating redox-sensitive nanogels into bioabsorbable nanofibrous membrane to acquire ROS-balance capacity for skin regeneration. Bioact Mater 2021; 6:3461-3472. [PMID: 33817421 PMCID: PMC7988352 DOI: 10.1016/j.bioactmat.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Facing the high incidence of skin diseases, it is urgent to develop functional materials with high bioactivity for wound healing, where reactive oxygen species (ROS) play an important role in the wound healing process mainly via adjustment of immune response and neovasculation. In this study, we developed a kind of bioabsorbable materials with ROS-mediation capacity for skin disease therapy. Firstly, redox-sensitive poly(N-isopropylacrylamide-acrylic acid) (PNA) nanogels were synthesized by radical emulsion polymerization method using a disulfide molecule as crosslinker. The resulting nanogels were then incorporated into the nanofibrous membrane of poly(l-lactic acid) (PLLA) via airbrushing approach to offer bioabsorbable membrane with redox-sensitive ROS-balance capacity. In vitro biological evaluation indicated that the PNA-contained bioabsorbable membrane improved cell adhesion and proliferation compared to the native PLLA membrane. In vivo study using mouse wound skin model demonstrated that PNA-doped nanofibrous membranes could promote the wound healing process, where the disulfide bonds in them were able to adjust the ROS level in the wound skin for mediation of redox potential to achieve higher wound healing efficacy.
Collapse
Affiliation(s)
- Shihao Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yamin Li
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaofeng Qiu
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Anqi Jiao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Luo
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiajie Lin
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohui Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zeren Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiachan Hong
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peihao Cai
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jie Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Changsheng Liu
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
2
|
Wang SW, Lin YK, Fang JY, Lee RS. Synthesis and characterization of redox and ultrasonic dual-responsive organic-inorganic amphiphilic hybrid copolymers for drug delivery. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2019.1685515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shiu-Wei Wang
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| | - Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan
| | - Ren-Shen Lee
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
3
|
Wan WL, Tian B, Lin YJ, Korupalli C, Lu MY, Cui Q, Wan D, Chang Y, Sung HW. Photosynthesis-inspired H 2 generation using a chlorophyll-loaded liposomal nanoplatform to detect and scavenge excess ROS. Nat Commun 2020; 11:534. [PMID: 31988280 PMCID: PMC6985250 DOI: 10.1038/s41467-020-14413-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
A disturbance of reactive oxygen species (ROS) homeostasis may cause the pathogenesis of many diseases. Inspired by natural photosynthesis, this work proposes a photo-driven H2-evolving liposomal nanoplatform (Lip NP) that comprises an upconversion nanoparticle (UCNP) that is conjugated with gold nanoparticles (AuNPs) via a ROS-responsive linker, which is encapsulated inside the liposomal system in which the lipid bilayer embeds chlorophyll a (Chla). The UCNP functions as a transducer, converting NIR light into upconversion luminescence for simultaneous imaging and therapy in situ. Functioning as light-harvesting antennas, AuNPs are used to detect the local concentration of ROS for FRET biosensing, while the Chla activates the photosynthesis of H2 gas to scavenge local excess ROS. The results thus obtained indicate the potential of using the Lip NPs in the analysis of biological tissues, restoring their ROS homeostasis, possibly preventing the initiation and progression of diseases.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Bo Tian
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yu-Jung Lin
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chiranjeevi Korupalli
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Qinghua Cui
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Dehui Wan
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
4
|
Abstract
Synthetic polymers, biopolymers, and their nanocomposites are being studied, and some of them are already used in different medical areas. Among the synthetic ones that can be mentioned are polyolefins, fluorinated polymers, polyesters, silicones, and others. Biopolymers such as polysaccharides (chitosan, hyaluronic acid, starch, cellulose, alginates) and proteins (silk, fibroin) have also become widely used and investigated for applications in medicine. Besides synthetic polymers and biopolymers, their nanocomposites, which are hybrids formed by a macromolecular matrix and a nanofiller (mineral or organic), have attracted great attention in the last decades in medicine and in other fields due to their outstanding properties. This review covers studies done recently using the polymers, biopolymers, nanocomposites, polymer micelles, nanomicelles, polymer hydrogels, nanogels, polymersomes, and liposomes used in medicine as drugs or drug carriers for cancer therapy and underlines their responses to internal and external stimuli able to make them more active and efficient. They are able to replace conventional cancer drug carriers, with better results.
Collapse
|
5
|
Mackiewicz M, Romanski J, Drabczyk K, Waleka E, Stojek Z, Karbarz M. Degradable, thermo-, pH- and redox-sensitive hydrogel microcapsules for burst and sustained release of drugs. Int J Pharm 2019; 569:118589. [PMID: 31386880 DOI: 10.1016/j.ijpharm.2019.118589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022]
Abstract
Polymer microcapsules offer a possibility of storing increased amounts of drugs. Appropriate design and composition of the microcapsules allow tuning of the drug-release process. In this paper, we report on synthesis of hydrogel microcapsules sensitive to temperature and pH and degradable by glutathione and hydrogen peroxide. Microcapsules were based on thermo-responsive poly(N-isopropylacrylamide) and degradable cystine crosslinker, and were synthesized by applying precipitation polymerization. Such way of polymerization was appropriately modified to limit the crosslinking in the microcapsule center. This led to a possibility of washing out the pNIPA core at room temperature and the formation of a capsule. Microcapsules revealed rather high drug-loading capacity of ca. 17%. The degradation of the microcapsules by the reducing agent (GSH) and the oxidizing agent (H2O2) was confirmed by using the DLS, UV-Vis, SEM and TEM techniques. Depending on pH and concentration of the reducing/oxidizing agents a fast or slow degradation of the microcapsules and a burst or long-term release of doxorubicin (DOX) were observed. The DOX loaded microcapsules appeared to be cytotoxic against A2780 cancer cells similarly to DOX alone, while unloaded microcapsules did not inhibit proliferation of the cells.
Collapse
Affiliation(s)
- Marcin Mackiewicz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Jan Romanski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Kinga Drabczyk
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Ewelina Waleka
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Av., PL 00-664 Warsaw, Poland
| | - Zbigniew Stojek
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland.
| |
Collapse
|
6
|
Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L. Recent Advances on Reactive Oxygen Species-Responsive Delivery and Diagnosis System. Biomacromolecules 2019; 20:2441-2463. [PMID: 31117357 DOI: 10.1021/acs.biomac.9b00628] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in biological metabolism and intercellular signaling. However, ROS level is dramatically elevated due to abnormal metabolism during multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. By taking advantage of the discrepancy of ROS levels between normal and diseased tissues, a variety of ROS-sensitive moieties or linkers have been developed to design ROS-responsive systems for the site-specific delivery of drugs and genes. In this review, we summarized the ROS-responsive chemical structures, mechanisms, and delivery systems, focusing on their current advances for precise drug/gene delivery. In particular, ROS-responsive nanocarriers, prodrugs, and supramolecular hydrogels are summarized in terms of their application for drug/gene delivery, and common strategies to elevate or diminish cellular ROS concentrations, as well as the recent development of ROS-related imaging probes were also discussed.
Collapse
Affiliation(s)
- Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Xun Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Shanzhou Duan
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Yong Liu
- Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| |
Collapse
|
7
|
El-Mohtadi F, d'Arcy R, Tirelli N. Oxidation-Responsive Materials: Biological Rationale, State of the Art, Multiple Responsiveness, and Open Issues. Macromol Rapid Commun 2018; 40:e1800699. [DOI: 10.1002/marc.201800699] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Farah El-Mohtadi
- Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology; Medicine, and Health; The University of Manchester; Manchester M13 9PT UK
| | - Richard d'Arcy
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; 16163 Genova Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology; Medicine, and Health; The University of Manchester; Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; 16163 Genova Italy
| |
Collapse
|
8
|
Synthesis of PEGylated alternating copolymer bearing thioether pendants for oxidation responsive drug delivery. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Jazani A, Arezi N, Maruya-Li K, Jung S, Oh JK. Facile Strategies to Synthesize Dual Location Dual Acidic pH/Reduction-Responsive Degradable Block Copolymers Bearing Acetal/Disulfide Block Junctions and Disulfide Pendants. ACS OMEGA 2018; 3:8980-8991. [PMID: 31459031 PMCID: PMC6644509 DOI: 10.1021/acsomega.8b01310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 06/01/2023]
Abstract
We report new dual acidic pH/reduction-responsive degradable amphiphilic block copolymers featured with dual acidic pH-labile acetal linkage and a reductively-cleavable disulfide bond at the hydrophilic/hydrophobic block junction as well as pendant disulfide bonds in the hydrophobic block. Centered on the use of a macroinitiator approach, three strategies utilize the combination of atom transfer radical polymerization and reversible addition fragmentation chain transfer polymerization in a sequential or concurrent mechanism, along with facile coupling reactions. Combined structural analysis with dual-stimuli-responsive degradation investigation allows better understanding of the architectures and orthogonalities of the formed block copolymers as a diblock or a triblock copolymer. Our study presents the development of effective synthetic strategies to well-defined multifunctional amphiphilic block copolymers that exhibit dual-stimuli-responsive degradation at dual location (called the DL-DSRD strategy), thus potentially promising as nanoassemblies for effective drug delivery.
Collapse
Affiliation(s)
- Arman
Moini Jazani
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - Newsha Arezi
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - Keaton Maruya-Li
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - Sungmin Jung
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and
Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
10
|
Zhang K, Liu J, Guo Y, Li Y, Ma X, Lei Z. Synthesis of temperature, pH, light and dual-redox quintuple-stimuli-responsive shell-crosslinked polymeric nanoparticles for controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:1-9. [DOI: 10.1016/j.msec.2018.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/04/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
|
11
|
Irregular polystyrene peroxides – a promising macroinitiators synthesized by radical polymerization under oxygen inflow. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|