1
|
Santos FND, Fonseca LM, Jansen-Alves C, Crizel RL, Pires JB, Kroning IS, de Souza JF, Fajardo AR, Lopes GV, Dias ARG, Zavareze EDR. Antimicrobial activity of geranium (Pelargonium graveolens) essential oil and its encapsulation in carioca bean starch ultrafine fibers by electrospinning. Int J Biol Macromol 2024; 265:130953. [PMID: 38499124 DOI: 10.1016/j.ijbiomac.2024.130953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Geranium (Pelargonium graveolens) is known for being an aromatic plant rich in bioactive compounds with antibacterial properties. In this study, geranium essential oil (GEO) was extracted and encapsulated in ultrafine bean starch fibers produced by electrospinning as an antibacterial agent. GEO revealed a composition rich in volatile compounds, including citronellol, cis-geraniol, β-linalool, citronellyl formate, and linalool formate. In its free form, GEO exhibited high antibacterial activity against pathogenic bacteria strains (L. monocytogenes, S. aureus, and E. coli). The bean starch fibers, produced with and without the addition of GEO, were uniform and continuous, with an average diameter ranging from 249 to 373 nm. Confocal analysis indicated a uniform distribution of GEO in the fibers, with a loading capacity of 54.0 %, 42.9 %, and 36.5 % for 20 %, 30 %, and 40 % GEO concentrations, respectively. Remarkably, fibers containing 40 % GEO showed a significant reduction in tested bacteria (L. monocytogenes, S. aureus, and E. coli), suggesting promising applications in preventing losses and extending the shelf life of food through active packaging.
Collapse
Affiliation(s)
- Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil.
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Cristina Jansen-Alves
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Rosane Lopes Crizel
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Isabela Schneid Kroning
- Microbiology Laboratory (LabMicro), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Jaqueline Ferreira de Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - André Ricardo Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Graciela Völz Lopes
- Microbiology Laboratory (LabMicro), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil
| |
Collapse
|
2
|
Burak D, Rahman MA, Seo DC, Byun JY, Han J, Lee SE, Cho SH. In Situ Metal Deposition on Perhydropolysilazane-Derived Silica for Structural Color Surfaces with Antiviral Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54143-54156. [PMID: 37942676 DOI: 10.1021/acsami.3c12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Structural coloration has recently sparked considerable attention on the laboratory and industrial scale. Structural colors can create vivid, saturated, and long-lasting colors on metallic surfaces for optical filters, digital displays, and surface decoration. This study used an all-solution, low-cost method, free of a specific setup procedure, to fabricate structural colors of a multilayered metal-dielectric structure based on interference effects within a Fabry-Perot cavity. The insulating (dielectric) layer was produced from perhydropolysilazane, an inorganic silicon-containing polymer, from which hydrogen was liberated during conversion into silica and applied in situ to reduce metallic nanoparticles on the silica surface. This simple manufacturing technique contributes to the fabrication of large, high-quality surfaces, which could potentially be employed for surface decoration. The fabricated surfaces also exhibited excellent hydrophobic properties with contact angles up to 137°, endowing them with self-cleaning properties. In addition, the antiviral and antibacterial impact of the silver (Ag)/silica (SiO2)/stainless steel (SUS) film was also examined, as Ag has been reported to have antimicrobial and, recently, antiviral properties. According to three independently conducted antiviral assays, the fluorescence expression of virus-infected cells, PCR analysis, and modified tissue culture infectious dose assay, the film inhibited lentivirus by 75, 97, and 99% when exposed to the virus for 20 min, 1 h, and 20 min, respectively. Furthermore, the film had exceptional antibacterial activity with no colony growth observed for 24 and 12 h of inoculation. It is thus conceivable that these structural color-based films can be used to not only decorate metal surfaces with aesthetic colors but also limit virus and bacterium propagation successfully.
Collapse
Affiliation(s)
- Darya Burak
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology (Nanomaterials Science and Engineering), University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Md Abdur Rahman
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Dong-Chan Seo
- Research Animal Resources Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Ji Young Byun
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Joonsoo Han
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - So-Hye Cho
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology (Nanomaterials Science and Engineering), University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Nogueira D, Marasca NS, Latorres JM, Costa JAV, Martins VG. Effect of an active biodegradable package made from bean flour and açaí seed extract on the quality of olive oil. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daiane Nogueira
- Laboratory of Food Technology, School of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| | - Natasha Spindola Marasca
- Laboratory of Food Technology, School of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, School of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food Engineering Federal University of Rio Grande Rio Grande Brazil
| |
Collapse
|
7
|
Mohsenabadi N, Rajaei A, Tabatabaei M, Mohsenifar A. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. Int J Biol Macromol 2018; 112:148-155. [PMID: 29337097 DOI: 10.1016/j.ijbiomac.2018.01.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 01/15/2023]
Abstract
This study was set to prepare a new active film by using a biodegradable bio-based source, i.e., corn starch. To achieve that, benzoic acid (BA) and chitosan (CS) were covalently bound and CS-BA nanogel was then obtained using self-assembly method. Subsequently, rosemary essential oil (REO) was encapsulated in CS-BA nanogel. Finally, REO in both free and encapsulated forms were incorporated in starch-carboxy methyl cellulose (CMC) films and their physical, mechanical and antimicrobial properties were studied. The films incorporating CS-BA nanogel had a higher water vapor permeability compared with the films containing REO. Moreover, film containing 0.2% CS-BA nanogel had the highest transparency and tensile strength. The REO and nanogel alone had inhibitory effects against Staphylococcus aureus (S. aureus) and by encapsulation, the inhibitory effect of REO was increased. By encapsulating REO in nanogel, both immediately (REO) and gradual (Nanogel) antimicrobial effect against S. aureus in the starch-CMC suspensions were obtained.
Collapse
Affiliation(s)
- Nafiseh Mohsenabadi
- Department of Food Science, Faculty of Agricultural Engineering, Shahrood University of Technology, 36199-95161 Shahrood, Iran
| | - Ahmad Rajaei
- Department of Food Science, Faculty of Agricultural Engineering, Shahrood University of Technology, 36199-95161 Shahrood, Iran.
| | - Meisam Tabatabaei
- Microbial Biotechnoloegy Department, Agricultural Biotechnology Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), 31535-1897 Karaj, Iran; Nanosystems Research Team (NRTeam), Karaj, Iran.
| | - Afshin Mohsenifar
- Nanosystems Research Team (NRTeam), Karaj, Iran; Research & Development Department of Nanozino, Tehran, 1653643181, Iran
| |
Collapse
|