1
|
Wang Q, Li Y, Xiao J, Xia L. Intelligent Eucommia ulmoides Rubber/Ionomer Blends with Thermally Activated Shape Memory and Self-Healing Properties. Polymers (Basel) 2023; 15:1182. [PMID: 36904423 PMCID: PMC10006959 DOI: 10.3390/polym15051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Intelligent Eucommia ulmoides rubber (EUR) and ionomer Surlyn resin (SR) blends were prepared and studied in this manuscript. This is the first paper to combine EUR with SR to prepare blends with both the shape memory effect and self-healing capability. The mechanical, curing, thermal, shape memory and self-healing properties were studied by a universal testing machine, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), respectively. Experimental results showed that the increase in ionomer content not only improved mechanical and shape memory properties but also endowed the compounds with excellent self-healing ability under the appropriate environmental conditions. Notably, the self-healing efficiency of the composites reached 87.41%, which is much higher than the efficiency of other covalent cross-linking composites. Therefore, these novel shape memory and self-healing blends can expand the use of natural Eucommia ulmoides rubber, such as in special medical devices, sensors and actuators.
Collapse
Affiliation(s)
| | | | | | - Lin Xia
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Antony GJM, Bhavya BK, Raja S, Aruna ST. Solvent casting-assisted synthesis of thermally responsive shape memory polymer and its composites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Wu G, Gu Y, Hou X, Li R, Ke H, Xiao X. Hybrid Nanocomposites of Cellulose/Carbon-Nanotubes/Polyurethane with Rapidly Water Sensitive Shape Memory Effect and Strain Sensing Performance. Polymers (Basel) 2019; 11:E1586. [PMID: 31569828 PMCID: PMC6835329 DOI: 10.3390/polym11101586] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
In this work, a fast water-responsive shape memory hybrid polymer based on thermoplastic polyurethane (TPU) was prepared by crosslinking with hydroxyethyl cotton cellulose nanofibers (CNF-C) and multi-walled carbon nanotubes (CNTs). The effect of CNTs content on the electrical conductivity of TPU/CNF-C/CNTs nanocomposite was investigated for the feasibility of being a strain sensor. In order to know its durability, the mechanical and water-responsive shape memory effects were studied comprehensively. The results indicated good mechanical properties and sensing performance for the TPU matrix fully crosslinked with CNF-C and CNTs. The water-induced shape fixity ratio (Rf) and shape recovery ratio (Rr) were 49.65% and 76.64%, respectively, indicating that the deformed composite was able to recover its original shape under a stimulus. The TPU/CNF-C/CNTs samples under their fixed and recovered shapes were tested to investigate their sensing properties, such as periodicity, frequency, and repeatability of the sensor spline under different loadings. Results indicated that the hybrid composite can sense large strains accurately for more than 103 times and water-induced shape recovery can to some extent maintain the sensing accuracy after material fatigue. With such good properties, we envisage that this kind of composite may play a significant role in developing new generations of water-responsive sensors or actuators.
Collapse
Affiliation(s)
- Guanzheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yanjia Gu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
- Shenzhen Digital Life Institute, Shenzhen 581000, China.
| | - Xiuliang Hou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Ruiqing Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China.
| | - Xueliang Xiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Xu Z, Ding C, Wei DW, Bao RY, Ke K, Liu Z, Yang MB, Yang W. Electro and Light-Active Actuators Based on Reversible Shape-Memory Polymer Composites with Segregated Conductive Networks. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30332-30340. [PMID: 31355626 DOI: 10.1021/acsami.9b10386] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reversible shape-memory polymers (RSMPs) show great potential in actuating applications because of its repeatability among many other advantages. Indeed, in many cases, multiresponsive RSMPs are more expected, and the strategy to introduce functional fillers without deteriorating the reversible deformation performance is of great importance. Here, a facile strategy to balance the electro, photothermal performance, and molecular chain mobility is reported. Segregated conductive networks of carbon nanotubes (S-CNTs) are constructed in the poly(ethylene-co-octene) (POE) matrix at a relatively low filler loading, which renders the composite good electrical, photothermal, and actuating properties. A low percolation threshold of 0.25 vol % is achieved. The electrical conductivity is up to 0.046 S·cm-1 for the POE/S-CNT composites with 2 vol % CNT, and the absorption of light (760 nm) is above 90%. These characteristics guarantee that the actuator can be driven at low voltage (≤36 V) and suitable light intensity (250 mW·cm-2) with a good actuating performance. An electric gripper and a light-active crawling robot demonstrate the potential applications in multiresponsive robots. This work introduces a facile strategy to fabricate multiresponsive RSMPs by designing CNT network structures in polymer composites and holds great potential to enlarge the applications of RSMPs in many areas including artificial muscles and bionic robots.
Collapse
Affiliation(s)
- Zhao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , Sichuan , China
| | - Chao Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , Sichuan , China
| | - Dun-Wen Wei
- School of Mechanical and Electrical Engineering , University of Electronic Science and Technology of China , Chengdu 611731 , Sichuan , China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , Sichuan , China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , Sichuan , China
| | - Zhengying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , Sichuan , China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , Sichuan , China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , Sichuan , China
| |
Collapse
|
5
|
Hybrid and biocompatible cellulose/polyurethane nanocomposites with water-activated shape memory properties. Carbohydr Polym 2019; 216:86-96. [DOI: 10.1016/j.carbpol.2019.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
|
6
|
Lai SM, You PY. Preparation and Characterization of Ethylene Vinyl-Acetate Copolymer/Silicone Blends with Excellent Two-Way Shape Memory Properties. Macromol Res 2018. [DOI: 10.1007/s13233-018-6134-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|