1
|
Bui HL, Chen YL, Chuang YC, Ou K, Tsai YC, Huang CJ. Betainization of Polydopamine/Polyethylenimine Coating for Universal Zwitterionization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13169-13177. [PMID: 37680107 DOI: 10.1021/acs.langmuir.3c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Biofoulants can adhere to multiple surfaces, degrading the performance of medical devices and industrial facilities and/or causing nosocomial infection. The surface immobilization of zwitterionic materials can prevent the initial attachment of the foulants but lacks extensive implementation. Herein, we propose a facile, universal, two-step surface modification strategy to improve fouling resistance. In the first step, the substrates were immersed in a codeposition solution containing dopamine and branched polyethylenimine (PEI) to form a "primer" layer (PDA/PEI). In the second step, the primer layers were treated with 1,3-propane sultone to betainize primary/secondary/tertiary amine moieties of PEI, generating zwitterions on substrates. After betainization, PS-grafted PDA/PEI (PDA/PEI/S) via a ring-opening alkylation reaction manifested changes in wettability. X-ray photoelectron spectroscopy revealed the presence of zwitterionic moieties on the PDA/PEI/S surfaces. Further investigations using ellipsometry and atomic force microscopy were conducted to scrutinize the relation among the PEI content, film thickness, primer stability, and betainization. As a result, zwitterion-decorated substrates prepared under optimal conditions can exhibit high resistance against bacterial fouling, achieving a 98.5% reduction in bacterial attachment. In addition, the method shows a substrate-independent property, capable of successfully applying it on organic and inorganic substrates. Finally, the newly developed approach shows excellent biocompatibility, displaying no significant difference compared with blank control samples. Overall, we envision that the facile surface modification strategy can further promote the preparation of zwitterion-decorated materials in the future.
Collapse
Affiliation(s)
- Hoang Linh Bui
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-li, Taoyuan 32023, Taiwan
| | - Yin-Lin Chen
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan 32023, Taiwan
| | - Ying-Chieh Chuang
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan 32023, Taiwan
| | - Kai Ou
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan 32023, Taiwan
| | - Yao-Chou Tsai
- Department of Surgery, Taipei Tzuchi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
- Department of Urology, Tzu Chi University, Medical College, Hualien 97004, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan 32023, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan
- NCU-Covestro Research Center, National Central University, Jhong-Li, Taoyuan 32023, Taiwan
| |
Collapse
|
2
|
Hou H, Huang B, Yu X, Lan J, Chen F. Sulfonate betaine modified
PVDF
/
SiO
2
composite electrolyte for solid state lithium ion battery. J Appl Polym Sci 2022. [DOI: 10.1002/app.53573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongying Hou
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Baoxiang Huang
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Xiaohua Yu
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Jian Lan
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Fangshu Chen
- Law School Kunming University of Science and Technology Kunming China
| |
Collapse
|
3
|
Magalhães FF, Pereira AF, Freire MG, Tavares APM. New liquid supports in the development of integrated platforms for the reuse of oxidative enzymes and polydopamine production. Front Bioeng Biotechnol 2022; 10:1037322. [DOI: 10.3389/fbioe.2022.1037322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Polydopamine (PDA), a bioinspired polymer from mussel adhesive proteins, has attracted impressive attention as a novel coating for (nano) materials with an adequate conformal layer and adjustable thickness. Currently, PDA is obtained from dopamine chemical oxidation under alkaline conditions, limiting its use in materials sensible to alkaline environments. Envisaging a widespread use of PDA, the polymerization of dopamine by enzymatic catalysis allows the dopamine polymerization in a large range of pHs, overcoming thus the limitations of conventional chemical oxidation. Moreover, the conventional method of polymerization is a time-consuming process and produces PDA films with poor stability, which restricts its applications. On the other hand, the main bottleneck of enzyme-based biocatalytic processes is the high cost of the single use of the enzyme. In this work, laccase was used to catalyse dopamine polymerization. To improve its performance, a liquid support for integrating the laccase and its reuse together with the PDA production and recovery was developed using aqueous biphasic systems (ABS). Firstly, dopamine polymerization by laccase was optimized in terms of pH, temperature and initial dopamine concentration. It was demonstrated that the highest enzymatic polymerization of dopamine was achieved at pH 5.5, 30°C and 2 mg ml−1 of dopamine. Then, ABS composed of polymers, salts and ionic liquids were evaluated to optimize the laccase confinement in one phase while PDA is recovered in the opposite phase. The most promising ABS allowing the separation of laccase from the reaction product is composed of polypropylene glycol (400 g mol−1) and K2HPO4. The polymerization of dopamine in ABS leads to a remarkable improvement of polymerization of 3.9-fold in comparison to the conventional chemical PDA polymerization. The phase containing the confined laccase was reused for four consecutive reaction cycles, with a relative polymerization of 68.9% in the last cycle. The results of this work proved that ABS are a promising approach to create a liquid support for enzyme reuse allowing the process intensification efforts. The use of biocatalysts in ABS emerges as sustainable and alternative platforms from environmental and techno-economic points of view.
Collapse
|
4
|
Regev C, Jiang Z, Kasher R, Miller Y. Distinct Antifouling Mechanisms on Different Chain Densities of Zwitterionic Polymers. Molecules 2022; 27:7394. [PMID: 36364221 PMCID: PMC9654173 DOI: 10.3390/molecules27217394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Antifouling polymer coating surfaces are used in widespread industries applications. Zwitterionic polymers have been identified as promising materials in developing polymer coating surfaces. Importantly, the density of the polymer chains is crucial for acquiring superior antifouling performance. This study introduces two different zwitterionic polymer density surfaces by applying molecular modeling tools. To assess the antifouling performance, we mimic static adsorption test, by placing the foulant model bovine serum albumin (BSA) on the surfaces. Our findings show that not only the density of the polymer chain affect antifouling performance, but also the initial orientation of the BSA on the surface. Moreover, at a high-density surface, the foulant either detaches from the surface or anchor on the surface. At low-density surface, the foulant does not detach from the surface, but either penetrates or anchors on the surface. The anchoring and the penetrating mechanisms are elucidated by the electrostatic interactions between the foulant and the surface. While the positively charged ammonium groups of the polymer play major role in the interactions with the negatively charged amino acids of the BSA, in the penetrating mechanism the ammonium groups play minor role in the interactions with the contact with the foulant. The sulfonate groups of the polymer pull the foulant in the penetrating mechanism. Our work supports the design of a high-density polymer chain surface coating to prevent fouling phenomenon. Our study provides for the first-time insights into the molecular mechanism by probing the interactions between BSA and the zwitterion surface, while testing high- and low-densities polymer chains.
Collapse
Affiliation(s)
- Clil Regev
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er Sheva 84105, Israel
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| |
Collapse
|
5
|
Mussel primed grafted zwitterionic phosphorylcholine based superhydrophilic/underwater superoleophobic antifouling membranes for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Nayak K, Kumar A, Tripathi BP. Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
High Flux and Antifouling Nanofiltration Membrane Modified by Ag@UiO-66-NH2 and Its Application for Biphenol A Removal. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/4197365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Owing to the specific porous structure which could provide additional passage channel for some molecules, metal organic frameworks are attractive candidates for enhancing permeability and selectivity of membranes in pervaporation, reverse osmosis, and gas separation. In this experiment, Ag@UiO-66-NH2 was introduced into polyamide separation layer by interfacial polymerization of triethylenetetramine and 1,3,5-benzenetricarboxylic acid chloride for nanofiltration. The results indicated that Ag@UiO-66-NH2 nanoparticles did endow the membranes with rapid diffusion pathways for water molecules. When the content of Ag@UiO-66-NH2 was 0.03 g, the prepared membrane (NF-Ag-3) showed high flux about 47.3 L·m-2·h-1 at 0.6 MPa, which is about 2-fold higher than that of polyamide membrane without Ag@UiO-66-NH2, while the MgSO4 rejection rate remained about 87.4%. The membrane also showed excellent antifouling properties, and the water flux recovery ratio was 95.6% after filtration BSA solution. When it was applied for 50 mg/L bisphenol A removal, the rejection rate reached 94.6%, and the flux is about 49.1 L·m-2·h-1. Moreover, Ag particles on UiO-66-NH2 rendered the membrane with good inhibition for Escherichia coli. The antibacterial rate of the membranes is above 95% when the loading of Ag@UiO-66-NH2 is more than 0.03 g.
Collapse
|
8
|
Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
9
|
|
10
|
Marson GV, Pereira DTV, da Costa Machado MT, Di Luccio M, Martínez J, Belleville MP, Hubinger MD. Ultrafiltration performance of spent brewer's yeast protein hydrolysate: Impact of pH and membrane material on fouling. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Nayak K, Kumar A, Das P, Tripathi BP. Amphiphilic antifouling membranes by polydopamine mediated molecular grafting for water purification and oil/water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Torrini F, Palladino P, Baldoneschi V, Scarano S, Minunni M. Sensitive 'two-steps' competitive assay for gonadotropin-releasing hormone detection via SPR biosensing and polynorepinephrine-based molecularly imprinted polymer. Anal Chim Acta 2021; 1161:338481. [PMID: 33896555 DOI: 10.1016/j.aca.2021.338481] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
The work reports an innovative bioassay for the detection of gonadorelin in urine, a gonadotropin-releasing hormone agonist widely used in fertility medicine and to treat hormonal dysfunctions. Gonadorelin is also a synthetic hormone listed by the World Anti-Doping Agency (WADA) and of interest in anti-doping controls. The main novelty relies on the development of a biocompatible, stable, and low-cost biomimetic receptor alternative to classic antibodies. Starting from norepinephrine monomer, a highly selective and sensitive molecularly imprinted polymer (MIP) was developed and optimized for optical real-time and label-free SPR biosensing. The selectivity has been addressed by testing a series of peptides, from high to low similarity, both in terms of molecular weight and primary sequence. Due to the very low molecular weight of gonadorelin (1182 Da), a 'two-steps' competitive assay was developed. Particular attention has been paid to the design of the competitor and its binding affinity constant towards the MIP, being a key step for the success of the competitive strategy. The SPR assay was first optimized in standard conditions and finally applied to untreated urine samples, achieving the sensitivity required by WADA guidelines. The MIP, tested in parallel with a monoclonal antibody, gave comparable results in terms of affinity constants and selectivity towards possible interfering analytes. However, the biomimetic receptor appears clearly superior in terms of sensitivity and reproducibility. This, together with its preparation simplicity, the extremely low-cost of the monomer and its reusability for hundreds of measurements, make polynorepinephrine-based MIPs powerful rivals to immune-based approaches in the near future for similar applications.
Collapse
Affiliation(s)
- Francesca Torrini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| | - Pasquale Palladino
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| | - Veronica Baldoneschi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| | - Simona Scarano
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| | - Maria Minunni
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino (FI), Italy.
| |
Collapse
|
13
|
Utech T, Pötschke P, Simon F, Janke A, Kettner H, Paiva M, Zimmerer C. Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abce05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
Collapse
|
14
|
Impact of MWCO and Dopamine/Polyethyleneimine Concentrations on Surface Properties and Filtration Performance of Modified Membranes. MEMBRANES 2020; 10:membranes10090239. [PMID: 32961881 PMCID: PMC7559832 DOI: 10.3390/membranes10090239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023]
Abstract
The mussel-inspired method has been investigated to modify commercial ultrafiltration membranes to induce antifouling characteristics. Such features are essential to improve the feasibility of using membrane processes in protein recovery from waste streams, wastewater treatment, and reuse. However, some issues still need to be clarified, such as the influence of membrane pore size and the polymer concentration used in modifying the solution. The aim of the present work is to study a one-step deposition of dopamine (DA) and polyethyleneimine (PEI) on ultrafiltration membrane surfaces. The effects of different membrane molecular weight cut-offs (MWCO, 20, 30, and 50 kDa) and DA/PEI concentrations on membrane performance were assessed by surface characterization (FTIR, AFM, zeta potential, contact angle, protein adsorption) and permeation of protein solution. Results indicate that larger MWCO membranes (50 kDa) are most benefited by modification using DA and PEI. Moreover, PEI is primarily responsible for improving membrane performance in protein solution filtration. The membrane modified with 0.5:4.0 mg mL-1 (DA: PEI) presented a better performance in protein solution filtration, with only 15% of permeate flux drop after 2 h of filtration. The modified membrane can thus be potentially applied to the recovery of proteins from waste streams.
Collapse
|
15
|
Two-Step Dopamine-to-Polydopamine Modification of Polyethersulfone Ultrafiltration Membrane for Enhancing Anti-Fouling and Ultraviolet Resistant Properties. Polymers (Basel) 2020; 12:polym12092051. [PMID: 32916778 PMCID: PMC7569805 DOI: 10.3390/polym12092051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Polydopamine has been widely used as an additive to enhance membrane fouling resistance. This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation, antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes. The modification was performed through a two-step mechanism: adding the dopamine additive followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine (PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step, and the duration of dipping in the Tris solution in the second step affect the properties of the resulting membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold (15 vs. 50 L/m2·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane resistance to UV irradiation by minimizing photodegradation's occurrence.
Collapse
|
16
|
Chien HW, Lin HY, Tsai CY, Chen TY, Chen WN. Superhydrophilic Coating with Antibacterial and Oil-Repellent Properties via NaIO 4-Triggered Polydopamine/Sulfobetaine Methacrylate Polymerization. Polymers (Basel) 2020; 12:E2008. [PMID: 32899234 PMCID: PMC7565826 DOI: 10.3390/polym12092008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
Superhydrophilic coatings have been widely used for the surface modification of membranes or biomedical devices owing to their excellent antifouling properties. However, simplifying the modification processes of such materials remains challenging. In this study, we developed a simple and rapid one-step co-deposition process using an oxidant trigger to fabricate superhydrophilic surfaces based on dopamine chemistry with sulfobetaine methacrylate (SBMA). We studied the effect of different oxidants and SBMA concentrations on surface modification in detail using UV-VIS spectrophotometry, dynamic light scattering, atomic force microscopy, X-ray photoelectron spectroscopy, and surface plasmon resonance. We found that NaIO4 could trigger the rate of polymerization and the optimum ratio of dopamine to SBMA is 1:25 by weight. This makes the surface superhydrophilic (water contact angle < 10°) and antifouling. The superhydrophilic coating, when introduced to polyester membranes, showed great potential for oil/water separation. Our study provides a complete description of the simple and fast preparation of superhydrophilic coatings for surface modification based on mussel-inspired chemistry.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 000807, Taiwan; (H.-Y.L.); (T.-Y.C.)
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 000807, Taiwan
| | - Hong-Yu Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 000807, Taiwan; (H.-Y.L.); (T.-Y.C.)
| | - Chau-Yi Tsai
- Department of Materials Engineering and Science, National Formosa University, Yunlin County 000640, Taiwan; (C.-Y.T.); (W.-N.C.)
| | - Tai-Yu Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 000807, Taiwan; (H.-Y.L.); (T.-Y.C.)
| | - Wei-Nian Chen
- Department of Materials Engineering and Science, National Formosa University, Yunlin County 000640, Taiwan; (C.-Y.T.); (W.-N.C.)
| |
Collapse
|
17
|
Khan B, Haider S, Khurram R, Wang Z, Wang X. Preparation of an Ultrafiltration (UF) Membrane with Narrow and Uniform Pore Size Distribution via Etching of SiO 2 Nano-Particles in a Membrane Matrix. MEMBRANES 2020; 10:membranes10070150. [PMID: 32664428 PMCID: PMC7407847 DOI: 10.3390/membranes10070150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/03/2022]
Abstract
The UF membrane with a narrow and uniform pore size distribution and a low tendency to foul has significant applications in wastewater treatment. A major hindrance in the preparation of the UF membrane with these features is the lack of a scalable and economical membrane fabrication method. Herein, we devise a new strategy to prepare a high-quality polyvinylidene fluoride/polymethyl acrylate/cellulose acetate (PVDF/PMMA/CA) blend UF membrane via a combination of the etching mechanism with the traditional Loeb–Sourirajan (L-S) phase inversion method. Different concentrations of silicon dioxide (SiO2) nanoparticles (NP) in the membrane matrix were etched by using a 0.2 M hydrofluoric acid (HF) solution in a coagulation bath. This strategy provided the membrane with unique features along with a narrow and uniform pore size distribution (0.030 ± 0.005 μm). The etched membrane exhibits an increase of 2.3 times in pure water flux (PWF) and of 6.5 times in permeate flux(PF), with a slight decrease in rejection ratio (93.2% vs. 97%) when compared to than that of the un-etched membrane. Moreover, this membrane displayed outstanding antifouling ability, i.e., a flux recovery ratio (FRR) of 97% for 1000 mg/L bovine serum albumin (BSA) solution, a low irreversible fouling ratio of 0.5%, and highly enhanced hydrophilicity due to the formation of pores/voids throughout the membrane structure. The aforementioned features of the etched membrane indicate that the proposed method of etching SiO2 NP in membrane matrix has a great potential to improve the structure and separation efficiency of a PVDF/PMMA/CA blend membrane.
Collapse
Affiliation(s)
- Bushra Khan
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; (B.K.); (S.H.); (R.K.)
| | - Sajjad Haider
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; (B.K.); (S.H.); (R.K.)
| | - Rooha Khurram
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; (B.K.); (S.H.); (R.K.)
| | - Zhan Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; (B.K.); (S.H.); (R.K.)
- Correspondence: (Z.W.); (X.W.)
| | - Xi Wang
- School of Humanities and Social Sciences Macao, Polytechnic Institute, Macao 999078, China
- Correspondence: (Z.W.); (X.W.)
| |
Collapse
|
18
|
Improved permeability and biofouling resistance of microfiltration membranes via quaternary ammonium and zwitterion dual-functionalized diblock copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Mitigating the fouling of mixed-matrix cellulose acetate membranes for oil–water separation through modification with polydopamine particles. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
The Recent Progress in Modification of Polymeric Membranes Using Organic Macromolecules for Water Treatment. Symmetry (Basel) 2020. [DOI: 10.3390/sym12020239] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For decades, the water deficit has been a severe global issue. A reliable supply of water is needed to ensure sustainable economic development in population growth, industrialization and urbanization. To solve this major challenge, membrane-based water treatment technology has attracted a great deal of attention to produce clean drinking water from groundwater, seawater and brackish water. The emergence of nanotechnology in membrane science has opened new frontiers in the development of advanced polymeric membranes to enhance filtration performance. Nevertheless, some obstacles such as fouling and trade-off of membrane selectivity and permeability of water have hindered the development of traditional polymeric membranes for real applications. To overcome these issues, the modification of membranes has been pursued. The use of macromolecules for membrane modification has attracted wide interests in recent years owing to their interesting chemical and structural properties. Membranes modified with macromolecules have exhibited improved anti-fouling properties due to the alteration of their physiochemical properties in terms of the membrane morphology, porosity, surface charge, wettability, and durability. This review provides a comprehensive review of the progress made in the development of macromolecule modified polymeric membranes. The role of macromolecules in polymeric membranes and the advancement of these membrane materials for water solution are presented. The challenges and future directions for this subject are highlighted.
Collapse
|
21
|
Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110257. [DOI: 10.1016/j.msec.2019.110257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022]
|
22
|
Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117469] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Subramaniam M, Goh P, Sevgili E, Karaman M, Lau W, Ismail A. Hydroxypropyl methacrylate thin film coating on polyvinylidene fluoride hollow fiber membranes via initiated chemical vapor deposition. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Das P, van der Meer AD, Vivas A, Arik YB, Remigy JC, Lahitte JF, Lammertink RG, Bacchin P. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance. Tissue Eng Part A 2019; 25:1635-1645. [DOI: 10.1089/ten.tea.2019.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pritam Das
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
- Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Aisen Vivas
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Yusuf B. Arik
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Jean-Christophe Remigy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| | - Jean-François Lahitte
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| | - Rob G.H. Lammertink
- Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| |
Collapse
|
25
|
Enfrin M, Dumée LF, Lee J. Nano/microplastics in water and wastewater treatment processes - Origin, impact and potential solutions. WATER RESEARCH 2019; 161:621-638. [PMID: 31254888 DOI: 10.1016/j.watres.2019.06.049] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 05/22/2023]
Abstract
The presence of nano and microplastics in water has increasingly become a major environmental challenge. A key challenge in their detection resides in the relatively inadequate analytical techniques available preventing deep understanding of the fate of nano/microplastics in water. The occurrence of nano/microplastics in water and wastewater treatment plants poses a concern for the quality of the treated water. Due to their broad but small size and diverse chemical natures, nano/microplastics may travel easily along water and wastewater treatment processes infiltrating remediation processes at various levels, representing operational and process stability challenges. This review aims at presenting the current understanding of the fate and impact of nano/microplastics through water and wastewater treatment plants. The formation and fragmentation mechanisms, physical-chemical properties and occurrence of nano/microplastics in water are correlated to the interactions of nano/microplastics with water and wastewater treatment plant processes and potential solutions to limit these interactions are comprehensively reviewed. This critical analysis offers new strategies to limit the number of nano/microplastics in water and wastewater to keep water quality up to the required standards and reduce threats on our ecosystems.
Collapse
Affiliation(s)
- Marie Enfrin
- Department of Chemical and Process Engineering, University of Surrey, Surrey, GU27XH, United Kingdom
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria, 3216, Australia.
| | - Judy Lee
- Department of Chemical and Process Engineering, University of Surrey, Surrey, GU27XH, United Kingdom
| |
Collapse
|
26
|
Kujawa J, Rynkowska E, Fatyeyeva K, Knozowska K, Wolan A, Dzieszkowski K, Li G, Kujawski W. Preparation and Characterization of Cellulose Acetate Propionate Films Functionalized with Reactive Ionic Liquids. Polymers (Basel) 2019; 11:E1217. [PMID: 31330836 PMCID: PMC6680812 DOI: 10.3390/polym11071217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022] Open
Abstract
1-(1,3-diethoxy-1,3-dioxopropan-2-ylo)-3-methylimidazolium bromide (RIL1_Br), 1-(2-etoxy-2-oxoethyl)-3-methylimidazolium bromide (RIL2_Br), 1-(2-etoxy-2-oxoethyl)-3-methylimidazolium tetrafluoroborate (RIL3_BF4) ionic liquids were synthesized. Subsequently, the dense cellulose acetate propionate (CAP)-based materials containing from 9 to 28.6 wt % of these reactive ionic liquids were elaborated. Reactive ionic liquids (RILs) were immobilized in CAP as a result of the transesterification reaction. The yield of this reaction was over 90% with respect to the used RIL. The physicochemical properties of resultant films were studied using nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The RIL incorporation influenced the morphology of films by increasing their surface roughness with the rise of RIL content. The thermal stability of CAP-based membranes was dependent on the nature of the ionic liquid. Nevertheless, it was proven that CAP films containing RILs were stable up to 120-150 °C. Transport properties were characterized by water permeation tests. It was found that the type and the amount of the ionic liquid in the CAP matrix substantially influenced the transport properties of the prepared hybrid materials.
Collapse
Affiliation(s)
- Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Edyta Rynkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Kateryna Fatyeyeva
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Andrzej Wolan
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Krzysztof Dzieszkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Torun, Poland.
| |
Collapse
|
27
|
Elucidating the Chemistry behind the Reduction of Graphene Oxide Using a Green Approach with Polydopamine. NANOMATERIALS 2019; 9:nano9060902. [PMID: 31234338 PMCID: PMC6630331 DOI: 10.3390/nano9060902] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
A new approach using X-ray photoelectron spectroscopy (XPS) was employed to give insight into the reduction of graphene oxide (GO) using a green approach with polydopamine (PDA). In this approach, the number of carbon atoms bonded to OH and to nitrogen in PDA is considered and compared to the total intensity of the signal resulting from OH groups in polydopamine-reduced graphene oxide (PDA-GO) to show the reduction. For this purpose, GO and PDA-GO with different times of reduction were prepared and characterized by Raman Spectroscopy and XPS. The PDA layer was removed to prepare reduced graphene oxide (RGO) and the effect of all chemical treatments on the thermal and electrical properties of the materials was studied. The results show that the complete reduction of the OH groups in GO occurred after 180 min of reaction. It was also concluded that Raman spectroscopy is not well suited to determine if the reduction and restoration of the sp2 structure occurred. Moreover, a significant change in the thermal stability was not observed with the chemical treatments. Finally, the electrical powder conductivity decreased after reduction with PDA, increasing again after its removal.
Collapse
|
28
|
Yao L, He C, Chen S, Zhao W, Xie Y, Sun S, Nie S, Zhao C. Codeposition of Polydopamine and Zwitterionic Polymer on Membrane Surface with Enhanced Stability and Antibiofouling Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1430-1439. [PMID: 30056716 DOI: 10.1021/acs.langmuir.8b01621] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although abundant works have been developed in mussel-inspired antifouling coatings, most of them suffer from poor chemical stability, especially in a strongly alkaline environment. Herein, we report a robust one-step mussel-inspired method to construct a highly chemical stable and excellent antibiofouling membrane surface coating with a highly efficient codeposition of polydopamine (PDA) with zwitterionic polymer. In the study, PDA and polyethylenimine-quaternized derivative (PEI-S) are codeposited on the surface of poly(ether sulfone) (PES) ultrafiltration membrane in water at room temperature. In contrast to individual PDA coating, the obtained PDA/PEI-S coating exhibits excellent chemical stability even in a strongly alkaline environment owing to the cross-linking and unexpected cation-π interaction between the PEI-S and PDA. Thanks to the introduction of PEI-S, systematic protein adsorption tests and bacteria adhesion experiments demonstrated that the surfaces could prevent bovine serum fibrinogen and lysozyme adsorption and could reduce Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli adhesion. Benefiting from the versatile functionality of PDA, the proposed strategy is not limited to PES membrane surface but also others such as poly(ethylene terephthalate) sheets and commercial polypropylene microfiltration membranes. Overall, this work enriches the exploration of a remarkable coating with enhanced stability and excellent antifouling property via a facile, robust, and material-independent approach to modifying the membrane surface.
Collapse
Affiliation(s)
- Liangsong Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Shengqiang Nie
- College of Chemistry and Materials Engineering , Guiyang University , Guiyang 550000 , China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
29
|
Cui Z, Li W, Zeng H, Tang X, Zhang J, Qin S, Han N, Li J. Fabricating PVDF hollow fiber microfiltration membrane with a tenon-connection structure via the thermally induced phase separation process to enhance strength and permeability. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Javadi M, Jafarzadeh Y, Yegani R, Kazemi S. PVDF membranes embedded with PVP functionalized nanodiamond for pharmaceutical wastewater treatment. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Monsef K, Homayoonfal M, Davar F. Coating carboxylic and sulfate functional groups on ZrO2 nanoparticles: Antifouling enhancement of nanocomposite membranes during water treatment. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Sun Y, Li D, Yang H, Guo X. Fabrication of Fe3O4@polydopamine@polyamidoamine core–shell nanocomposites and their application for Cu(ii) adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj01815d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe3O4@PDA@PAMAM nanocomposites were fabricated with a polydopamine assisted method, possessing excellent magnetic properties and high adsorption capacity for Cu(ii).
Collapse
Affiliation(s)
- Yukun Sun
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Dongyun Li
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou
- China
| | - Hui Yang
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xingzhong Guo
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|