1
|
García-Sobrino R, Casado-Losada I, Caltagirone C, García-Crespo A, García C, Rodríguez-Hernández J, Reinecke H, Gallardo A, Elvira C, Martínez-Campos E. Osteoblastic Cell Sheet Engineering Using P(VCL-HEMA)-Based Thermosensitive Hydrogels Doped with pVCL@Icariin Nanoparticles Obtained with Supercritical CO 2-SAS. Pharmaceutics 2024; 16:1063. [PMID: 39204408 PMCID: PMC11359487 DOI: 10.3390/pharmaceutics16081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
New clinical strategies for treating severe bone and cartilage injuries are required, especially for use in combination with implant procedures. For this purpose, p(VCL-co-HEMA) thermosensitive hydrogels have been activated with icariin-loaded nanoparticles to be used as bone-cell-harvesting platforms. Supercritical CO2-SAS technology has been applied to encapsulate icariin, a small molecule that is involved in osteoblastic differentiation. Thus, physical-chemical analysis, including swelling and transmittance, showed the impact of HEMA groups in hydrogel composition. Moreover, icariin (ICA) release from p(VCL-co-HEMA) platforms, including pVCL@ICA nanoparticles, has been studied to evaluate their efficacy in relevant conditions. Finally, the thermosensitive hydrogels' cell compatibility, transplant efficiency, and bone differentiation capacity were tested. This study identifies the optimal formulations for icariin-activated hydrogels for both control and HEMA formulations. Using this technique, osteoblastic sheets that were rich in collagen type I were successfully transplanted and recultivated, maintaining an optimal extracellular matrix (ECM) composition. These findings suggest a new cell-sheet-based therapy for bone regeneration purposes using customized and NP-activated pVCL-based cell platforms.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | - Isabel Casado-Losada
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Carmen Caltagirone
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Ana García-Crespo
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Carolina García
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Helmut Reinecke
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Alberto Gallardo
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Carlos Elvira
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
| | - Enrique Martínez-Campos
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC) Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain; (R.G.-S.); (C.G.); (H.R.)
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid (UCM), Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| |
Collapse
|
2
|
García-Sobrino R, Ruiz-Blas I, García C, Reinecke H, Elvira C, Rodríguez-Hernández J, Martínez-Campos E, Gallardo A. Hydrogels with dual sensitivity to temperature and pH in physiologically relevant ranges as supports for versatile controlled cell detachment. BIOMATERIALS ADVANCES 2024; 159:213826. [PMID: 38479241 DOI: 10.1016/j.bioadv.2024.213826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Thermosensitive hydrogels based on the N-vinyl caprolactam (VCL), capable of allowing for cell adhesion and proliferation, as well as non-aggressive detachment by controlled temperature drop, were functionalized with 23 % or lower molar percentages of the cationizable hydrophobic unit 2-(diisopropylamino) ethyl methacrylate (DPAEMA), to obtain networks with dual sensitivity to temperature and pH. The swelling analysis of the systems has shown a transition pK (pKb) close to physiological values, dependent on the temperature of the medium (pKb of 6.6 and 6.9 when the temperature of the medium is above and below the transition temperature VPTT, respectively) and little dependence on the degree of functionalization of DPAEMA. In addition, at temperatures below the transition temperature (VPTT), the systems have shown large swelling variations as a function of the pH (i.e. below and above the pKb), exhibiting greater absorption capacity at pHs below pKb, where the DPAEMA units are cationized. Cytocompatibility and transplant capacity have been evaluated using the C166-GFP endothelial cell line. None of the thermosensitive hydrogels with variable DPAEMA content showed a delay with respect to the control without DPAEMA neither in terms of adhesion nor in proliferation. However, by increasing the percentage of DPAEMA functionalization -and decreasing thermosensitivity-, a correlative decrease in mitochondrial activity was obtained in the transplant, with significant differences for the hydrogels with DPAEMA molar percentage of 3 % or higher. Taking advantage of the proximity of the pKb to the physiological value, we have evaluated the cellular response and the capacity for transplantation after lowering the pH to 6.5, below pKb. A direct relationship of the DPAEMA functionalization degree on the detachment efficiency was observed, since the hydrogels with the highest molar load of DPAEMA showed higher mitochondrial metabolic activity after cell detachment.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain; Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (IP), UCM, Unidad Asociada al CSIC por el ICTP y el IQM, Paseo de Juan XXIII 1, 28040 Madrid, Spain.
| | - Irene Ruiz-Blas
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (IP), UCM, Unidad Asociada al CSIC por el ICTP y el IQM, Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Carolina García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Helmut Reinecke
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Carlos Elvira
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Juan Rodríguez-Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Enrique Martínez-Campos
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain; Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (IP), UCM, Unidad Asociada al CSIC por el ICTP y el IQM, Paseo de Juan XXIII 1, 28040 Madrid, Spain.
| | - Alberto Gallardo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
3
|
Zhang Y, Wei H, Hua B, Hu C, Zhang W. Preparation and application of the thermo-/pH-/ ion-sensitive semi-IPN hydrogel based on chitosan. Int J Biol Macromol 2024; 258:128968. [PMID: 38154725 DOI: 10.1016/j.ijbiomac.2023.128968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Chitosan based hydrogels with multiple stimulus responses have broad application prospects in many fields. Considering the advantages of semi interpenetrating network (IPN) technology and the special temperature and ion responsiveness of polymers containing zwitterionic groups, a semi-IPN hydrogel was prepared through in situ free radical polymerization of N,N-dimethyl acrylamide and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide with polyethylene glycol dimethacrylate as a crosslinker and carboxymethyl chitosan as filler. The gel mass fraction and swelling ratio were measured, and the preparation conditions were optimized. The result indicated that the hydrogel possessed a unique thermo-/pH-/ ion-sensitive behavior. The swelling ratio increased with the increase of temperature and ion concentration, and showed a decreasing trend with the increase in pH. In addition, the hydrogel was stable when the stimuli changed. Adsorption behavior of the hydrogel to Eosin Y (EY) was systematically investigated. The adsorption process can be described well by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating that it was a chemical adsorption. The experiments indicated that the hydrogel exhibited good antifouling and reusability features. Therefore, the semi-IPN hydrogel with antifouling properties and thermo-/pH-/ion-sensitivity can be easily manufactured is expected to find applications in water treatment fields.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Bingya Hua
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
4
|
García-Sobrino R, Lago E, Goñi C, Ramos V, García C, Reinecke H, Elvira C, Rodríguez-Hernández J, Gallardo A, Martínez-Campos E. Fabrication of 3D cylindrical thermosensitive hydrogels as supports for cell culture and detachment of tubular cell sheets. BIOMATERIALS ADVANCES 2022; 144:213210. [PMID: 36473351 DOI: 10.1016/j.bioadv.2022.213210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Pseudo interpenetrating vinyl-caprolactam (VCL) based thermosensitive tubular hydrogels with a volume phase transition temperature, VPTT, around 35 °C, have been prepared by combining two different crosslinkers, a di-methacrylate (C1) and a di-vinyl urea (C2). The molar ratio between the two crosslinkers (for a global crosslinker molar percentage of 1.9) has shown to play a key role on the properties of the hydrogel. Increasing the amount of di-vinyl urea, leads to transparent but rather fragile materials and to a lower extent of thermosensitivity, that is, to a lower variation in the hydrogel swelling upon temperature change. However, tubes prepared with a selected crosslinker molar ratio C1/C2 of 65/35 provided a compromise between transparency, thermosensitivity and maneuverability and were, thus, evaluated as supports for cell culture using premyoblastic cells. These hydrogels, used as supports, allow for surface adhesion and cell proliferation until confluence, and eventually an efficient monolayer detachment (and transplant to a 3D-printed polylactic acid (PLA) support) through a controlled drop in temperature. As a result, this method permits to obtain tubular tissue constructs with potential applications in tissue engineering such as in the elaboration of vascular grafts.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain; Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Eugenia Lago
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Clara Goñi
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Viviana Ramos
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Carolina García
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Helmut Reinecke
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carlos Elvira
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alberto Gallardo
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Enrique Martínez-Campos
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain; Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Associated Unit to the ICTP-IQM-CSIC, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain.
| |
Collapse
|
5
|
|
6
|
González-Henríquez CM, Rodriguez-Umanzor FE, Almagro-Correa J, Sarabia-Vallejos MA, Martínez-Campos E, Esteban-Lucía M, Del Campo-García A, Rodríguez-Hernández J. Biocompatible fluorinated wrinkled hydrogel films with antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111031. [PMID: 32993990 DOI: 10.1016/j.msec.2020.111031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Surface-modified hydrogel films were designed to control the bacterial colonization on their surface and to promote cell proliferation through the gradual insertion of highly hydrophobic functional monomers. These hydrogel films were deposited via spin-coating technique, using muscovite mica as a substrate. These samples were then exposed to different external stimuli to produce wrinkled patterns. The relationship between the monomers which compose the hydrogel, was varied to alter the hydrophobic/hydrophilic balance of the final composite. Contact angle and confocal Raman spectroscopy measurements were carried out to characterize the surface and the bulk of the hydrogel film. Cell proliferation and antimicrobial tests were performed using premyoblastic murine cells (C2C12-GFP) and RAW 264.7 (ATCC® TIB-71) macrophagic cell lines, and also for bacteria strains, Staphylococcus aureus and Escherichia coli. The results indicate that the inclusion of the TFPMA produces an increase in cell proliferation, together with a decrease in living bacterial colonies after 48 h, both for Gram-positive or Gram-negative species.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago, Chile; Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago, Chile.
| | - Fernando E Rodriguez-Umanzor
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago, Chile
| | - Jessica Almagro-Correa
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago, Chile
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago, Chile; Instituto de Ingeniería Biológica y Medica, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago, Chile
| | - Enrique Martínez-Campos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Associated Unit to the ICTP-CSIC Polymer Functionalization Group, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | - Miguel Esteban-Lucía
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Associated Unit to the ICTP-CSIC Polymer Functionalization Group, Paseo Juan XXIII, n° 1, 28040 Madrid, Spain
| | | | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
7
|
|
8
|
González-Henríquez CM, Galleguillos-Guzmán SC, Sarabia-Vallejos MA, Santos-Coquillat A, Martínez-Campos E, Rodríguez-Hernández J. Microwrinkled pH-sensitive hydrogel films and their role on the cell adhesion/proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109872. [PMID: 31349409 DOI: 10.1016/j.msec.2019.109872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 01/09/2023]
Abstract
In this work, hydrogels based on HEMA and DMAEMA (pH-sensitive monomer) were used to form biocompatible films which present microwrinkled patterns in their surface, with the focus of exploring the role of chemical composition on cell adhesion and proliferation. Three different pH (5.4, 7.4, and 8.3) were employed to prepare these hydrogels. The pre-polymerized hydrogel mixtures were deposited via spin coating, then exposed to vacuum for deswelling the films and finally, to UV-light to spontaneously generate the wrinkled pattern. By following this procedure, is possible to form a thin rigid layer on the top of the soft and incompletely polymerized hydrogel film which generates, in turn, a wrinkled pattern due to strain mismatch in the interface. FE-SEM and AFM micrographs allowed us to characterize the wrinkled pattern dimensions. The results evidenced that chemical composition is directly related to the surface pattern morphologies obtained, not so in the case of pH variation, which does not generate relevant changes in the pattern morphology. Interestingly, these pH variations resulted in significant alterations on the interface-cell interactions. More precisely, a premyoblastic cell monolayer was cultured over the wrinkled pattern, showing an optimal cell proliferation at neutral pH. Also, the variation of DMAEMA amount on the monomer feed composition employed for the preparation of the wrinkle surfaces revealed that a certain amount is required to favor cell attachment and growth.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Universidad Tecnológica Metropolitana, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, P.O. Box 9845, Correo 21, Santiago, Chile; Universidad Tecnológica Metropolitana, Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| | - Susan C Galleguillos-Guzmán
- Universidad Tecnológica Metropolitana, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, P.O. Box 9845, Correo 21, Santiago, Chile
| | - Mauricio A Sarabia-Vallejos
- Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Departamento de Ingeniería Estructural y Geotecnia, P.O. Box 306, Correo 22, Santiago, Chile; Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Instituto de Ingeniería Biológica y Médica, P.O. Box 306, Correo 22, Santiago, Chile
| | - Ana Santos-Coquillat
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Associated Unit to the ICTP-CSIC Polymer Functionalization Group, Paseo Juan XXIII, N° 1, 28040 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Associated Unit to the ICTP-CSIC Polymer Functionalization Group, Paseo Juan XXIII, N° 1, 28040 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva N° 3, 28006 Madrid, Spain
| |
Collapse
|
9
|
Garrido L, Aranaz I, Gallardo A, García C, García N, Benito E, Guzmán J. Ionic Conductivity, Diffusion Coefficients, and Degree of Dissociation in Lithium Electrolytes, Ionic Liquids, and Hydrogel Polyelectrolytes. J Phys Chem B 2018; 122:8301-8308. [PMID: 30092637 DOI: 10.1021/acs.jpcb.8b06424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conductive and diffusional behavior of electrolytes in media with different dielectric and viscoelastic properties is investigated. A revised model to separate the contribution of dissociated and nondissociated species to the diffusion coefficients determined with NMR is proposed. Impedance spectroscopy is used to measure the ionic conductivity of lithium salts in aqueous medium, ionic liquids in aprotic solvents, and hydrogel polyelectrolytes. The diffusion coefficients of the species of interest in those systems are determined with multinuclear pulsed-gradient spin-echo (PGSE) NMR. The results are analyzed using the revised model. It is shown that the degree of ionization could be determined directly from measurements of ionic conductivity and diffusion coefficients in very different types of electrolytes and in a wide range of concentrations. Furthermore, these findings support the original Arrhenius hypothesis about electrolytes and show that the assumption of a complete dissociation is not required to describe their conductive behavior. The reduced conductivity observed in hydrogels, at or near swelling equilibrium, compared to that in solutions could be attributed mainly to the hindered ionic mobility caused by the network structure.
Collapse
Affiliation(s)
- Leoncio Garrido
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (ICTP-CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Inmaculada Aranaz
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (ICTP-CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Alberto Gallardo
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (ICTP-CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Carolina García
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (ICTP-CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Nuria García
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (ICTP-CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Esperanza Benito
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (ICTP-CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Julio Guzmán
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas (ICTP-CSIC) , Juan de la Cierva 3 , 28006 Madrid , Spain
| |
Collapse
|