1
|
Chaimovich M, Chaimovich A. Relative Resolution: An Analysis with the Kullback-Leibler Entropy. J Chem Theory Comput 2024; 20:2074-2087. [PMID: 38416535 DOI: 10.1021/acs.jctc.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel type of a multiscale approach, called Relative Resolution (RelRes), can correctly retrieve the behavior of various nonpolar liquids while speeding up molecular simulations by almost an order of magnitude. In this approach in a single system, molecules switch their resolution in terms of their relative separation, with near neighbors interacting via fine-grained potentials, yet far neighbors interacting via coarse-grained potentials; notably, these two potentials are analytically parametrized by a multipole approximation. Our current work focuses on analyzing RelRes by relating it with the Kullback-Leibler (KL) entropy, which is a useful metric for multiscale errors. In particular, we thoroughly examine the exact and approximate versions of this informatic measure for several alkane systems. By analyzing its dependency on the system size, we devise a formula for predicting the exact KL entropy of an "infinite" system via the computation of the approximate KL entropy of an "infinitesimal" system. Demonstrating that the KL entropy can holistically capture many multiscale errors, we settle bounds for the KL entropy that ensure a sufficient representation of the structural and thermal behavior by the RelRes algorithm. This, in turn, allows the scientific community to readily determine the ideal switching distance for an arbitrary RelRes system.
Collapse
Affiliation(s)
- Mark Chaimovich
- Russian School of Mathematics, North Bethesda, Maryland 20852, United States
| | - Aviel Chaimovich
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Wu S, Xu Z, Jian R, Tian S, Zhou L, Luo T, Xiong G. Molecular Alignment-Mediated Stick-Slip Poiseuille Flow of Oil in Graphene Nanochannels. J Phys Chem B 2023. [PMID: 37369077 DOI: 10.1021/acs.jpcb.3c01805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The flow behavior of oil in nanochannels has attracted extensive attention for oil transport applications. In most, if not all, of the prior theoretical simulations, oil molecules were observed to flow steadily in nanochannels under pressure gradients. In this study, non-equilibrium molecular dynamics simulations are conducted to simulate the Poiseuille flow of oil with three different hydrocarbon chain lengths in graphene nanochannels. Contrary to the conventional perception of steady flows of oil in nanochannels, we find that oil molecules with the longest hydrocarbon chain (i.e., n-dodecane) exhibit notable stick-slip flow behavior. An alternation between the high average velocity of n-dodecane in the slip motion and the low average velocity in the stick motion is observed, with a drastic, abrupt velocity jolt of up to 40 times occurring at the transition in a stick-slip motion. Further statistical analyses show that the stick-slip flow behavior of n-dodecane molecules originates from the molecular alignment change of oil near the graphene wall. The molecular alignment of n-dodecane shows different statistical distributions under stick and slip motion states, leading to significant changes of friction forces and thus notable velocity fluctuations. This work provides new insights into the Poiseuille flow behavior of oil in graphene nanochannels and may offer useful guidelines for other mass transport applications.
Collapse
Affiliation(s)
- Shiwen Wu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zhihao Xu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ruda Jian
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Siyu Tian
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Long Zhou
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Guoping Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Zhou D, Fuentes-Cabrera M, Singh A, Unocic RR, Carrillo JMY, Xiao K, Li Y, Li B. Atomic Edge-Guided Polyethylene Crystallization on Monolayer Two-Dimensional Materials. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong Zhou
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
- Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Akash Singh
- Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Raymond R. Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yumeng Li
- Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Bo Li
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
- Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
4
|
Zhang R, Fall WS, Hall KW, Gehring GA, Zeng X, Ungar G. Roughening Transition and Quasi-continuous Melting of Monolayers of Ultra-long Alkanes: Why Bulk Polymer Melting Is Strongly First-Order. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruibin Zhang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Centre for Soft Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - William S. Fall
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Centre for Soft Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
- Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Kyle Wm. Hall
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gillian A. Gehring
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Goran Ungar
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Centre for Soft Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Yagasaki T, Matubayasi N. Crystallization of Polyethylene Brushes and Its Effect on Interactions with Water. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuma Yagasaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
6
|
Zhang R, Fall WS, Hall KW, Gehring GA, Zeng X, Ungar G. Quasi-continuous melting of model polymer monolayers prompts reinterpretation of polymer melting. Nat Commun 2021; 12:1710. [PMID: 33731691 PMCID: PMC7969604 DOI: 10.1038/s41467-021-21799-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022] Open
Abstract
Condensed matter textbooks teach us that melting cannot be continuous and indeed experience, including with polymers and other long-chain compounds, tells us that it is a strongly first-order transition. However, here we report nearly continuous melting of monolayers of ultralong n-alkane C390H782 on graphite, observed by AFM and reproduced by mean-field theory and MD simulation. On heating, the crystal-melt interface moves steadily and reversibly from chain ends inward. Remarkably, the final melting point is 80 K above that of the bulk, and equilibrium crystallinity decreases continuously from ~100% to <50% prior to final melting. We show that the similarity in melting behavior of polymers and non-polymers is coincidental. In the bulk, the intermediate melting stages of long-chain crystals are forbidden by steric overcrowding at the crystal-liquid interface. However, there is no crowding in a monolayer as chain segments can escape to the third dimension.
Collapse
Affiliation(s)
- Ruibin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Centre for Soft Materials, Xi'an Jiaotong University, Xi'an, China.,Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK.,Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China
| | - William S Fall
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Centre for Soft Materials, Xi'an Jiaotong University, Xi'an, China.,Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - Kyle Wm Hall
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Gillian A Gehring
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Centre for Soft Materials, Xi'an Jiaotong University, Xi'an, China. .,Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
7
|
Hall KW, Percec S, Shinoda W, Klein ML. Chain-End Modification: A Starting Point for Controlling Polymer Crystal Nucleation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kyle Wm. Hall
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Simona Percec
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Michael L. Klein
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
8
|
Chaimovich M, Chaimovich A. Relative Resolution: A Computationally Efficient Implementation in LAMMPS. J Chem Theory Comput 2021; 17:1045-1059. [PMID: 33512166 DOI: 10.1021/acs.jctc.0c01003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, a novel type of multiscale simulation, called Relative Resolution (RelRes), was introduced. In a single system, molecules switch their resolution in terms of their relative separation, with near neighbors interacting via fine-grained potentials yet far neighbors interacting via coarse-grained potentials; notably, these two potentials are analytically parametrized by a multipole approximation. This multiscale approach is consequently able to correctly retrieve across state space the structural and thermal, as well as static and dynamic, behavior of various nonpolar mixtures. Our current work focuses on the practical implementation of RelRes in LAMMPS, specifically for the commonly used Lennard-Jones potential. By examining various correlations and properties of several alkane liquids, including complex solutions of alternate cooligomers and block copolymers, we confirm the validity of this automated LAMMPS algorithm. Most importantly, we demonstrate that this RelRes implementation gains almost an order of magnitude in computational efficiency, as compared with conventional simulations. We thus recommend this novel LAMMPS algorithm for anyone studying systems governed by Lennard-Jones interactions.
Collapse
Affiliation(s)
- Mark Chaimovich
- Russian School of Mathematics, North Bethesda, Maryland 20852, United States
| | - Aviel Chaimovich
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Crystallization of precisely halogen-substituted polyethylenes induced by ultra-high molecular weight polyethylene fiber. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Nasiłowska B, Bogdanowicz Z, Hińcza K, Mierczyk Z, Góźdź S, Djas M, Kowiorski K, Bombalska A, Kowalik A. Graphene Oxide Aerosol Deposition and its Influence on Cancer Cells. Preliminary Results. MATERIALS 2020; 13:ma13194464. [PMID: 33050094 PMCID: PMC7578968 DOI: 10.3390/ma13194464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
This paper presents the results of the interaction of graphene oxide (GO) on MDA-MB-231 and SW-954 cancer cell lines. The tests were carried out in two variants. In the first one, GO was sprayed on a Petri dish and then, the cancer cell lines were cultured. In the second variant, the cells were covered with an aerosol containing GO. In both variants, cancer cell lines were incubated and tested every 24, 48, and 72 h. After each time period, cell viability and surface morphology were measured. The tests after 72 h showed that coating with GO aerosol caused a reduction in cell viability by 52.7% and 26.4% for MDA-MB-231 and SW-954 cancer cell lines, respectively, with respect to a reference sample (without the influence of GO aerosol). Tests where GO is a culture medium demonstrated a decrease in cell viability by approximately 4.3% compared to a reference sample for both considered cell lines.
Collapse
Affiliation(s)
- Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
- Correspondence:
| | - Zdzisław Bogdanowicz
- Faculty of Mechanical Engineering, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Kinga Hińcza
- Department of Molecular Diagnostics, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland; (K.H.); (A.K.)
| | - Zygmunt Mierczyk
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland;
- Department of Prophylaxis and Cancer Epidemiology, Collegium Medicum, Jan Kochanowski University, Al. IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Małgorzata Djas
- Łukasiewicz Research Network—Institute of Electronic Materials Technology, Department of Chemical Synthesis and Flake Graphene; Wólczyńska 133, Warsaw 01-919, Poland; (M.D.); (K.K.)
| | - Krystian Kowiorski
- Łukasiewicz Research Network—Institute of Electronic Materials Technology, Department of Chemical Synthesis and Flake Graphene; Wólczyńska 133, Warsaw 01-919, Poland; (M.D.); (K.K.)
| | - Aneta Bombalska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland; (K.H.); (A.K.)
- Division of Medical Biology, Institute of Biology Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
11
|
Hall KW, Sirk TW, Percec S, Klein ML, Shinoda W. Divining the shape of nascent polymer crystal nuclei. J Chem Phys 2019; 151:144901. [PMID: 31615257 DOI: 10.1063/1.5123983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We demonstrate that nascent polymer crystals (i.e., nuclei) are anisotropic entities with neither spherical nor cylindrical geometry, in contrast to previous assumptions. In fact, cylindrical, spherical, and other high symmetry geometries are thermodynamically unfavorable. Moreover, postcritical transitions are necessary to achieve the lamellae that ultimately arise during the crystallization of semicrystalline polymers. We also highlight how inaccurate treatments of polymer nucleation can lead to substantial errors (e.g., orders of magnitude discrepancies in predicted nucleation rates). These insights are based on quantitative analysis of over four million crystal clusters from the crystallization of prototypical entangled polyethylene melts. New comprehensive bottom-up models are needed to capture polymer nucleation.
Collapse
Affiliation(s)
- Kyle Wm Hall
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Timothy W Sirk
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| | - Simona Percec
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Michael L Klein
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
12
|
Jafari SMA, Khajavi R, Goodarzi V, Kalaee MR, Khonakdar HA. Nonisothermal crystallization kinetic studies on melt processed poly(ethylene terephthalate)/polylactic acid blends containing graphene oxide and exfoliated graphite nanoplatelets. J Appl Polym Sci 2019. [DOI: 10.1002/app.47569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seyed Mohammad Ali Jafari
- Department of Polymer Engineering, Faculty of Engineering; South Tehran Branch, Islamic Azad University; P.O. Box 19585-466, Tehran Iran
| | - Ramin Khajavi
- Department of Polymer Engineering, Faculty of Engineering; South Tehran Branch, Islamic Azad University; P.O. Box 19585-466, Tehran Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center; Baqiyatallah University of Medical Sciences; P.O. Box 19945-546, Tehran Iran
| | - Mohammad R. Kalaee
- Department of Polymer Engineering, Faculty of Engineering; South Tehran Branch, Islamic Azad University; P.O. Box 19585-466, Tehran Iran
| | - Hossein A. Khonakdar
- Department of Polymer Engineering, Faculty of Engineering; South Tehran Branch, Islamic Azad University; P.O. Box 19585-466, Tehran Iran
| |
Collapse
|