1
|
Sokołowska M, Molnar K, Puskas JE, El Fray M. Improving the Sustainability of Enzymatic Synthesis of Poly(butylene adipate)-Based Copolyesters: Polycondensation Reaction in Bulk vs Diphenyl Ether. ACS OMEGA 2024; 9:38385-38395. [PMID: 39310126 PMCID: PMC11411551 DOI: 10.1021/acsomega.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
In response to mounting global concerns such as CO2 emissions, environmental pollution, and the depletion of fossil resources, the field of polymer science is shifting its focus toward sustainability. This research investigates the synthesis of poly(butylene adipate)-co-(dilinoleic adipate) (PBA-DLA) copolymers using two distinct methods: bulk polycondensation and polycondensation in diphenyl ether. The objective is to assess the environmental impact, chemical structure, composition, and key properties of the resulting copolymers, with a particular emphasis on determining the viability of bulk synthesis as a more sustainable approach. Various analytical methods, including nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and size exclusion chromatography, were employed to confirm successful copolymerization and highlight differences in molecular weight and microstructure. Additionally, thermal and dynamic mechanical analyses were conducted to thoroughly characterize the copolymers' properties. This research provides significant findings into the sustainable production of PBA-DLA copolymers, offering a more environmentally friendly approach without compromising product quality or performance.
Collapse
Affiliation(s)
- Martyna Sokołowska
- Szczecin,
Faculty of Chemical Technology and Engineering, Department of Polymer
and Biomaterials Science, West Pomeranian
University of Technology, Al. Piastow 45, 70-311 Szczecin, Poland
| | - Kristof Molnar
- Department
of Food, Agricultural and Biological Engineering, College of Food,
Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, United States
- Laboratory
of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad ter 4, Budapest 1089, Hungary
| | - Judit E. Puskas
- Department
of Food, Agricultural and Biological Engineering, College of Food,
Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, United States
| | - Miroslawa El Fray
- Szczecin,
Faculty of Chemical Technology and Engineering, Department of Polymer
and Biomaterials Science, West Pomeranian
University of Technology, Al. Piastow 45, 70-311 Szczecin, Poland
| |
Collapse
|
2
|
Park S, Bae B, Cha BJ, Kim YJ, Kwak HW. Development of poly(butylene adipate-co-butylene succinate-co-ethylene adipate-co-ethylene succinate) (PBEAS) net twine as biodegradable fishing gear. MARINE POLLUTION BULLETIN 2023; 194:115295. [PMID: 37517280 DOI: 10.1016/j.marpolbul.2023.115295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Nylon fishing nets have excellent strength and durability, but when lost at sea, their insufficient decomposition destroys habitats and spawning grounds, and pollutes the marine environment. This led to the development of poly(butylene succinate) (PBS) resin for biodegradable fishing gear based on aliphatic fibers. Prompted by the low stiffness and elastic recovery of PBS, we introduced two additional components into the molecular structure of PBS: adipic acid and ethylene glycol. These two new components were combined with succinic acid and 1,4-butanediol, the existing components of PBS, to synthesize poly(butylene adipate-co-butylene succinate-co-ethylene adipate-co-ethylene succinate) (PBEAS) resin via esterification and polycondensation reactions of a quaternary aliphatic copolyester. Although the molecular weight and molecular weight distribution of PBEAS are similar to those of PBS, it has excellent tensile strength, stiffness, elastic recovery, and biodegradability, with a low melting point for good production efficiency. These improvements are expected to allow PBEAS resin to be applied to gill nets for fish that require high stiffness, thereby expanding the use of biodegradable fishing gear.
Collapse
Affiliation(s)
- Subong Park
- Division of Marine Production System Management, Pukyong National University, Busan 48513, Republic of Korea.
| | - Bongseong Bae
- Fisheries Engineering Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Bong-Jin Cha
- Fisheries Engineering Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Yun Jin Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Sokołowska M, Nowak-Grzebyta J, Stachowska E, Miądlicki P, Zdanowicz M, Michalkiewicz B, El Fray M. Enzymatically catalyzed furan-based copolyesters containing dilinoleic diol as a building block. RSC Adv 2023; 13:22234-22249. [PMID: 37492515 PMCID: PMC10363961 DOI: 10.1039/d3ra03885h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
A more environmentally friendly method for creating sustainable alternatives to traditional aromatic-aliphatic polyesters is a valuable step towards resource-efficiency optimization. A library of furan-based block copolymers was synthesized via temperature-varied two-step polycondensation reaction in diphenyl ether using Candida antarctica lipase B (CAL-B) as a biocatalyst where dimethyl 2,5-furandicarboxylate (DMFDCA), α,ω-aliphatic linear diols (α,ω-ALD), and bio-based dilinoleic diol (DLD) were used as the starting materials. Nuclear magnetic spectroscopy (1H and 13C NMR), Fourier transform spectroscopy (FTIR) and size exclusion chromatography (SEC) were used to analyze the resulting copolymers. Additionally, crystallization behavior and thermal properties were studied using X-ray diffraction (XRD), digital holographic microscopy (DHM), and differential scanning microscopy (DSC). Finally, oxygen transmission rates (OTR) and dynamic mechanical analysis (DMTA) of furan-based copolyesters indicated their potential for medical packaging.
Collapse
Affiliation(s)
- Martyna Sokołowska
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science Al. Piastow 45 71-311 Szczecin Poland
| | - Jagoda Nowak-Grzebyta
- Poznan University of Technology, Faculty of Mechanical Engineering Ul. Piotrowo 3 60-965 Poznan Poland
| | - Ewa Stachowska
- Poznan University of Technology, Faculty of Mechanical Engineering Ul. Piotrowo 3 60-965 Poznan Poland
| | - Piotr Miądlicki
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Engineering of Catalytic and Sorbent Materials Department Al. Piastow 45 71-311 Szczecin Poland
| | - Magdalena Zdanowicz
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences, Center of Bioimmobilisation and Innovative Packaging Materials Ul. Janickiego 35 71-270 Szczecin Poland
| | - Beata Michalkiewicz
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Engineering of Catalytic and Sorbent Materials Department Al. Piastow 45 71-311 Szczecin Poland
| | - Miroslawa El Fray
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science Al. Piastow 45 71-311 Szczecin Poland
| |
Collapse
|
4
|
Hevilla V, Sonseca Á, Fernández-García M. Straightforward Enzymatic Methacrylation of Poly(Glycerol Adipate) for Potential Applications as UV Curing Systems. Polymers (Basel) 2023; 15:3050. [PMID: 37514438 PMCID: PMC10383392 DOI: 10.3390/polym15143050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Enzymatic one-pot synthesis procedures in a one-step and two-step monomers addition were developed to obtain poly(glycerol adipate) macromers with methacrylate end-functional groups under the presence of 1 and 3 wt% of Candida antarctica lipase B (CALB). Glycerol, divinyl adipate, and vinyl methacrylate were enzymatically reacted (vinyl methacrylate was either present from the beginning in the monomers solution or slowly dropped after 6 h of reaction) in tetrahydrofuran (THF) at 40 °C over 48 h. Macromers with a methacrylate end groups fraction of ≈52% in a simple one-pot one-step procedure were obtained with molecular weights (Mn) of ≈7500-7900 g/mol. The obtained products under the one-pot one-step and two steps synthesis procedures carried out using 1 and 3 wt% of a CALB enzymatic catalyst were profusely characterized by NMR (1H and 13C), MALDI-TOF MS, and SEC. The methacrylate functional macromers obtained with the different procedures and 1 wt% of CALB were combined with an Irgacure® 369 initiator to undergo homopolymerization under UV irradiation for 10 and 30 min, in order to test their potential to obtain amorphous networks within minutes with similar properties to those typically obtained by complex acrylation/methacrylation procedures, which need multiple purification steps and harsh reagents such as acyl chlorides. To the best of our knowledge, this is the first time that it has been demonstrated that the obtention of methacrylate-functional predominantly linear macromers based on poly(glycerol adipate) is able to be UV crosslinked in a simple one-step procedure.
Collapse
Affiliation(s)
- Víctor Hevilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Águeda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| |
Collapse
|
5
|
High Mechanical Properties of Stretching Oriented Poly(butylene succinate) with Two-Step Chain Extension. Polymers (Basel) 2022; 14:polym14091876. [PMID: 35567046 PMCID: PMC9099698 DOI: 10.3390/polym14091876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The structure, morphology, fracture toughness and flaw sensitivity length scale of chain-extended poly(butylene succinate) with various pre-stretch ratios were studied. PBS modification adopted from a multifunctional, commercially available chain-extension containing nine epoxy groups (ADR9) as the first step chain extension and hydroxyl addition modified dioxazoline (BOZ) as the second step. Time-temperature superposition (TTS) studies show that the viscosity increased sharply and the degree of molecular branching increased. Fourier transform infrared spectroscopy (FT-IR) confirm successful chain extension reactions. The orientation of the polymer in the pre-stretch state is such that spherulites deformation along the stretching direction was observed by polarized light optical microscopy (PLOM). The fracture toughness of sample (λfix = 5) is Γ ≈ 106 J m-2 and its critical flaw sensitivity length scale is Γ/Wc ≈ 0.01 m, approximately 5 times higher than PBS without chain-extension (Γ ≈ 2 × 105 J m-2 and Γ/Wc ≈ 0.002 m, respectively). The notch sensitivity of chain-extended PBS is significantly reduced, which is due to the orientation of spherulites more effectively preventing crack propagation. The principle can be generalized to other high toughness material systems.
Collapse
|
6
|
Sokołowska M, Nowak-Grzebyta J, Stachowska E, El Fray M. Enzymatic Catalysis in Favor of Blocky Structure and Higher Crystallinity of Poly(Butylene Succinate)-Co-(Dilinoleic Succinate) (PBS-DLS) Copolymers of Variable Segmental Composition. MATERIALS 2022; 15:ma15031132. [PMID: 35161077 PMCID: PMC8838851 DOI: 10.3390/ma15031132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
To systematically investigate the synthesis of poly(butylene succinate)-co-(dilinoleic succinate) (PBS-DLS) copolymers and to enrich the library of polyesters synthesized via a sustainable route, we conducted a two-step polycondensation using fully biobased monomers such as diethyl succinate (DS), 1,4-butanediol (1,4-BD) and dilinoleic diol (DLD) in diphenyl ether, using Candida Antarctica lipase B (CAL-B) as biocatalyst. A series of PBS-DLS copolyesters with a 90-10, 70-30 and 50-50 wt% of hard (PBS) to soft (DLS) segments ratio were compared to their counterparts, which were synthesized using heterogenous titanium dioxide/silicon dioxide (TiO2/SiO2) catalyst. Chemical structure and molecular characteristics of resulting copolymers were assessed using nuclear magnetic spectroscopy (1H- and 13C-NMR) and gel permeation chromatography (GPC), whereas thermal and thermomechanical properties as well as crystallization behavior were investigated by differential scanning microscopy (DSC), dynamic mechanical thermal analysis (DMTA), digital holographic microscopy (DHM) and X-ray diffraction (XRD). The obtained results showed that, depending on the type of catalyst, we can control parameters related to blockiness and crystallinity of copolymers. Materials synthesized using CAL-B catalysts possess more blocky segmental distribution and higher crystallinity in contrast to materials synthesized using heterogenous catalysts, as revealed by DSC, XRD and DHM measurements.
Collapse
Affiliation(s)
- Martyna Sokołowska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Al. Piastow 45, 71-311 Szczecin, Poland;
| | - Jagoda Nowak-Grzebyta
- Institute of Materials Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland;
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland;
| | - Ewa Stachowska
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland;
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Al. Piastow 45, 71-311 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
7
|
K S S, Ravji Paghadar B, Kumar SP, R L J. Polybutylene Succinate, A potential bio-degradable polymer: Synthesis, copolymerization And Bio-degradation. Polym Chem 2022. [DOI: 10.1039/d2py00204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(butylene succinate) is one of the emerging bio-degradable polymer, which has huge potential to be employed in a wide range of applications. Further, it is also recognized as one of...
Collapse
|
8
|
|
9
|
Hevilla V, Sonseca A, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Enzymatic Synthesis of Polyesters and Their Bioapplications: Recent Advances and Perspectives. Macromol Biosci 2021; 21:e2100156. [PMID: 34231313 DOI: 10.1002/mabi.202100156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Indexed: 01/17/2023]
Abstract
This article reviews the most important advances in the enzymatic synthesis of polyesters. In first place, the different processes of polyester enzymatic synthesis, i.e., polycondensation, ring opening, and chemoenzymatic polymerizations, and the key parameters affecting these reactions, such as enzyme, concentration, solvent, or temperature, are analyzed. Then, the latest articles on the preparation of polyesters either by direct synthesis or via modification are commented. Finally, the main bioapplications of enzymatically obtained polyesters, i.e., antimicrobial, drug delivery, or tissue engineering, are described. It is intended to point out the great advantages that enzymatic polymerization present to obtain polymers and the disadvantages found to develop applied materials.
Collapse
Affiliation(s)
- Víctor Hevilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Agueda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
| | - Coro Echeverría
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Alexandra Muñoz-Bonilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Marta Fernández-García
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| |
Collapse
|
10
|
Wang H, Liu K, Chen X, Wang M. Thermal properties and enzymatic degradation of PBS copolyesters containing dl-malic acid units. CHEMOSPHERE 2021; 272:129543. [PMID: 33485038 DOI: 10.1016/j.chemosphere.2021.129543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
A series of biodegradable copolyester of poly (butylene succinate-co-butylene malate) (P (BS-co-BM)) bearing hydroxyl groups were prepared by one-pot synthetic strategy without hydroxy-protection. The structure and properties of the P (BS-co-BM) were characterized by nuclear magnetic resonance (1H NMR), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), polarized optical microscope (POM), contact angle tester and enzymatic degradation. The results showed that the P (BS-co-BM) manifested excellent thermal properties. The glass transition temperature (Tg) of the P (BS-co-BM) increased with malic acid units added, the crystallizability temperature (Tc) decreased from 72.6 °C to 21.7 °C, and the melting point temperature (Tm) decreased from 117.9 °C to 82.4 °C. The crystallization rate of poly(butylene succinate) (PBS) segment within P (BS-co-BM) was improved by the introduction of malic acid. The enzymatic degradation rate increased with hydrophilicity of the copolyester improving.
Collapse
Affiliation(s)
- Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, 300457, Tianjin, PR China
| | - Kaiyue Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, 300457, Tianjin, PR China
| | - Xing Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, 300457, Tianjin, PR China
| | - Meiyi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, 300457, Tianjin, PR China.
| |
Collapse
|
11
|
Enzymatic Synthesis of Poly(alkylene succinate)s: Influence of Reaction Conditions. Processes (Basel) 2021. [DOI: 10.3390/pr9030411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Application of lipases (preferentially Candida antarctica Lipase B, CALB) for melt polycondensation of aliphatic polyesters by transesterification of activated dicarboxylic acids with diols allows to displace toxic metal and metal oxide catalysts. Immobilization of the enzyme enhances the activity and the temperature range of use. The possibility to use enzyme-catalyzed polycondensation in melt is studied and compared to results of polycondensations in solution. The experiments show that CALB successfully catalyzes polycondensation of both, divinyladipate and dimethylsuccinate, respectively, with 1,4-butanediol. NMR spectroscopy, relative molar masses obtained by size exclusion chromatography, MALDI-TOF MS and wide-angle X-ray scattering are employed to compare the influence of synthesis conditions for poly(butylene adipate) (PBA) and poly(butylene succinate) (PBS). It is shown that the enzymatic activity of immobilized CALB deviates and influences the molar mass. CALB-catalyzed polycondensation of PBA in solution for 24 h at 70 °C achieves molar masses of up to Mw~60,000 g/mol, higher than reported previously and comparable to conventional PBA, while melt polycondensation resulted in a moderate decrease of molar mass to Mw~31,000. Enzymatically catalyzed melt polycondensation of PBS yields Mw~23,400 g/mol vs. Mw~40,000 g/mol with titanium(IV)n-butoxide. Melt polycondensation with enzyme catalysis allows to reduce the reaction time from days to 3–4 h.
Collapse
|
12
|
Sokołowska M, Stachowska E, Czaplicka M, El Fray M. Effect of enzymatic
versus
titanium dioxide/silicon dioxide catalyst on crystal structure of ‘green’ poly[(butylene succinate)‐
co
‐(dilinoleic succinate)] copolymers. POLYM INT 2020. [DOI: 10.1002/pi.6104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Martyna Sokołowska
- Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science West Pomeranian University of Technology Szczecin Poland
| | - Ewa Stachowska
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology Poznan University of Technology Poznan Poland
| | - Michalina Czaplicka
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology Poznan University of Technology Poznan Poland
| | - Miroslawa El Fray
- Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science West Pomeranian University of Technology Szczecin Poland
| |
Collapse
|